期刊文献+

面向溺水救援机器人平稳跟踪的模糊比例微分控制视觉伺服方案

Fuzzy Proportional Plus Derivative Control Visual Servo Scheme for Stationary Tracking of Drowning Rescue Robots
下载PDF
导出
摘要 针对溺水救援机器人的平稳跟踪需求,提出一种基于模糊比例微分控制的视觉伺服方案,通过场馆顶部安装的俯视摄像头获取机器人的坐标位置,使用虚拟导航线设计动态行走路径,计算偏移方向、偏移角并制定转弯规则;利用三角隶属度函数制定模糊比例、微分控制规则表,根据2种规则表中的比例、微分系数分别控制机器人的偏移角、距离偏移量及其变化率,实现机器人的跟踪与避障的平稳性调整;机器人采用核相关滤波跟踪算法对溺水人员进行跟踪,在溺水人员位置变化时调整运动方向,依靠实时、稳定的声呐信息设置偏移角,实现避障功能;对所提出的方案在先锋P3DX型机器人上进行实验验证。结果表明:机器人能及时应对目标变化,没有跟错、跟丢现象;在不同工况时的横滚角均小于1°,避障率达到100%,能够快速、稳定、准确地到达目标位置,达到溺水救援机器人的前期应用要求。 To meet stationary tracking requirements of drowning rescue robots,a visual servo drowning rescue scheme based on fuzzy proportional plus derivative control was proposed.Coordinate positions of the robot were obtained through an overhead camera installed on the top of the venue,and a dynamic walking path was designed by using virtual naviga-tion lines.Offset direction and angle were calculated,and turning rules were formulated.A triangular membership func-tion was used to develop fuzzy proportional and derivative control rule tables.Offset angle and distance offset as well as their change rates of the robot were controlled according to proportional and derivative coefficients in the two rule tables to complete tracking and obstacle avoidance smoothness adjustment of the robot.The robot adopted kernel correlation filtering tracking algorithm to track the drowning person,and adjusted motion direction of the robot when position of the drowning person changed.The robot relied on real-time and stable sonar information to set the offset angle and achieved obstacle avoidance function.Experimental verification of the proposed scheme was conducted on Pioneer P3DX robot.The results show that the robot can respond to the change of the target in time without phenomena of mistracking and losing.All roll angles under different working conditions are less than 1°,and the obstacle avoidance rate reaches 100%.The robot can reach the target position quickly,stably,and accurately,which meets early application requirements of drowning rescue robots.
作者 郭英 厉广伟 刘宗尚 MOUNZEO Breit Hilley 李金屏 GUO Ying;LI Guangwei;LIU Zongshang;MOUNZEO Breit Hilley;LI Jinping(School of Information Science and Engineering,University of Jinan,Jinan 250022,Shandong,China;Shandong Provincial Key Laboratory of Network Based Intelligent Computing,University of Jinan,Jinan 250022,Shandong,China;Shandong Provincial University Key Laboratory of Information Processing and Cognitive Computing,University of Jinan,Jinan 250022,Shandong,China;School of Electrical Engineering,University of Jinan,Jinan 250022,Shandong,China)
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第2期227-233,共7页 Journal of University of Jinan(Science and Technology)
基金 山东省重点研发计划项目(2017CXGC0810) 山东省教育科学“十三五”规划教育招生考试专项课题项目(BYZK201917)。
关键词 溺水救援机器人 平稳跟踪 模糊比例微分控制 视觉伺服 drowning rescue robot stationary tracking fuzzy proportional plus derivative control visual servo
  • 相关文献

参考文献5

二级参考文献25

  • 1Wen Z Q, Cai Z X. Global path planning approach based on ant colony optimization algorithm [ J 1. Journal of Central South University,2006,13 ( 6 ) :707 - 712.
  • 2Chen X,Kong Y Y, Fang X, et al. A fast two-stage ACO algorithm for robotic path planning I J 1. Neural Computing and Applications,2013,22(2) :313 -319.
  • 3Gigras Y ,Gupta K. Ant colony based path planning algorithm for autonomous robotic vehicles E J 1. Journal of Artificial Intelligence & Applications,2012,3 ( 6 ) :31 - 38.
  • 4Liu Y S. The robot path planning based on region partition to node optimization [ J ]. Advanced Materials Research, 2011,38 (3) :605 -609.
  • 5Ceriotti M,Vasile M . MGA trajectory planning with an ACO- inspired algorithm [ J ]. Acta Astronautica, 2011 , 67 ( 9 ) : 1202 - 1217.
  • 6Tuncer A, Yildirim M. Dynamic path planning of mobile robots with improved genetic algorithm [ J 1. Computers & Electrical Engineering, 2012,38 ( 6 ) : 1564 - 1572.
  • 7Castillo O, Neyoy H, Sofia J. Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot E J 1- International Journal of Advanced Robotic" Systems, 2013,383 : 1 - 10.
  • 8Huang H. SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile rob E J 1. IEEE Transactions on Industrial lnformatics, 2013,9 ( 4 ) : 1828 - 1835.
  • 9王宪,杨国梁.基于改进蚁群算法的机器人轨迹规划[J].计算机系统应用,2010,19(11):79-82. 被引量:5
  • 10李金屏,修择,吕玉彬,韩延彬.基于虚拟定标线的巡检机器人视觉导航[J].中国体视学与图像分析,2011,16(1):50-56. 被引量:8

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部