摘要
结构健康监测和状态评估中现有大多数研究均需要精确的荷载作用位置或详细的荷载时程,为了同时获得荷载大小和位置,构建并训练了同时具备分类和回归能力的两分支卷积神经网络,建立了融合分类问题和回归问题的损失函数,提取结构响应与荷载大小、结构响应与荷载位置间的映射关系.通过数值简支梁算例和三层试验框架验证了该方法识别结构荷载大小和位置的精度.结果表明:噪声条件下数值模型的荷载识别误差在8%以内,荷载位置识别准确率在95%以上;实际结构的荷载识别误差在18%以内,荷载位置识别准确率为100%.两分支卷积神经网络可以很好地同时识别荷载大小和位置.
Most of the existing research in structural health monitoring and status assessment requires accurate load action locations or detailed dynamic load schedules.To simultaneously obtain the size and location of the dynamic load,a two-branch convolutional neural network with both classification and regression capabilities is constructed and trained.A loss function that integrates classification and regression problems is established to capture the mapping relationship between structural response and load magnitude,as well as between structural response and load location.The identification accuracy of load magnitude and location is demonstrated through numerical cantilever beam examples and a three-layer experimental framework.Results show that under noisy conditions,the error in load magnitude identification of the numerical model is within 8%,and the accuracy of load location identification is above 95%.For real structures,the error in load magnitude identification is within 18%,and the accuracy of load location identification is 100%.The two-branch convolutional neural network can effectively identify both the magnitude and location of dynamic loads.
作者
翁顺
郭街震
于虹
陈志丹
颜永逸
赵丹阳
Weng Shun;Guo Jiezhen;Yu Hong;Chen Zhidan;Yan Yongyi;Zhao Danyang(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China)
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第1期110-116,共7页
Journal of Southeast University:Natural Science Edition
基金
国家重点研发计划资助项目(2023YFC3805700)
国家自然科学基金资助项目(51922046,51778258)
华中科技大学交叉研究支持计划资助项目(2023JCYJ014)
中铁第四勘察设计院集团有限公司资助项目(KY2023014S,KY2023126S)。
关键词
荷载识别
加速度响应
深度学习
卷积神经网络
load identification
acceleration response
deep learning
convolutional neural network(CNN)