期刊文献+

一种用于人脸图像修复的TPDCU-Net算法

A TPDCU-Net Algorithm for Facial Image Inpainting
下载PDF
导出
摘要 针对目前的算法在细节处理、纹理清晰度以及语义特征连贯性方面存在的问题,提出一种用于人脸图像修复的基于Transformer的U型网络组合部分卷积和空洞卷积模块(Transformer partial convolution and dilated convolution U-shaped network,TPDCU-Net)算法。TPDCU-Net算法将注意力机制中的标准卷积替换为部分卷积,以保留更多可靠信息并降低计算量;同时,在下采样过程中为了减少重要信息的丢失,引入了空洞卷积模块,以改善修复效果。通过在高清人脸(celebfaces attributes high quality,CelebA-HQ)数据集上进行实验,使用峰值信噪比(peak signal-to-noise ratio,PSNR)、结构相似性指数(structural similarity index measure,SSIM)和平均绝对误差(mean absolute error,MAE)指标与现有的图像修复算法进行比较,结果表明当掩码比例最大时TPDCU-Net算法各指标值分别为23.0493 dB、0.7786、0.0368。该研究证实所提改进算法在人脸图像修复任务中取得了较好的效果。 To address the existing issues in current algorithms related to the processing of details,texture clarity,and coherence of semantic features,an algorithm for facial image inpainting based on Transformer partial convolution and dilated convolution U-shaped network(TPDCU-Net)was proposed.In the TPDCU-Net network,standard convolutions in the attention mechanism were replaced with partial convolutions to preserve more reliable information and reduce computational load.Simultaneously,in the downsampling process,dilated convolution modules were introduced to minimize the loss of important information,thereby improving the restoration effectiveness.Experimental evaluations on the celebfaces attributes high quality(CelebA-HQ)dataset compared the proposed algorithm with existing image inpainting algorithms using metrics such as peak signal-to-noise ratio(PSNR),structural similarity index measure(SSIM),and mean absolute error(MAE).The results showed that the corresponding metric values were 23.0493 dB,0.7786,and 0.0368,respectively when the mask ratio was maximized.The research indicated that the proposed improvement algorithm achieved better results in facial image inpainting tasks.
作者 徐开丽 张乾 何剑 XU Kaili;ZHANG Qian;HE Jian(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou,Guiyang 550025,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2024年第1期105-110,150,共7页 Journal of Hubei Minzu University:Natural Science Edition
基金 贵州民族大学校级科研项目(GZMUZK[2021]YB23)。
关键词 图像修复 部分卷积 TRANSFORMER 空洞卷积 注意力机制 U-Net 人脸图像 image inpainting partial convolution Transformer dilated convolution attention mechanism U-Net facial image
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部