期刊文献+

中心Holder条件下求解重根的Traub算法的收敛半径

Convergence Radius of Traub's Method for Multiple Roots under Center-Holder Continuous Condition
原文传递
导出
摘要 目前,人们在泰勒展开式的基础上提出了一种新的估算求解重根的迭代算法收敛半径的方法.这种方法已经估算了牛顿法的收敛半径,以及Osada算法和Halley算法求解重根的收敛半径,但是其计算的收敛半径都比较大.将在中心Holder条件下求解重根的Traub算法的收敛半径,并通过具体例子对计算结果进行比较,Traub算法的计算结果明显优于在同等条件下Osada和Halley算法的收敛半径. at present,people have proposed a new method to estimate the convergence ra-dius of iterative algorithm for solving multiple roots based on Taylor expansion.This method has estimated the convergence radius of Newton method and the convergence radius of Osada algorithm and Halley algorithm for solving multiple roots,but the calculated convergence radius is relatively large.This paper will solve the convergence radius of Traub algorithm with multiple roots under the central Holder condition,and compare the calculation results through specific examples.The calculation result of Traub algorithm is obviously better than that of Osada and Halley algorithm under the same conditions.
作者 刘素珍 LIU Su-zhen(Nantong Normal College,Nantong 226500,China)
出处 《数学的实践与认识》 北大核心 2024年第1期189-197,共9页 Mathematics in Practice and Theory
关键词 非线性方程重根 Traub算法 中心H?lder条件 multiple roots of nonlinear equations Traub algorithm central Holder condition
  • 相关文献

参考文献3

二级参考文献19

  • 1REN Hongmin, ARGYROS 1. Convergence radius of the modified Newton method for multiple zeros under H61der continuous derivative[J].Applied Mathematics and Computation, 2010, 217(2): 612-621.
  • 2BI Weihong, REN Hongmin, WU Qingbiao. Conver- gence of the modified Halley's method for multiple ze- ros under H61der continuous derivative[J]. Numerical Algorithms, 2011, 58(4): 497-512.
  • 3ZHOU Xiaojian, SONG Yongzhong. Convergence ra- dius of Osada' s method for multiple roots under HOlder and center-H61der continuous conditions[C]. ICNAAM, AIP Conference Proceedings, 2011, 1389: 1836-1839.
  • 4ZHOU Xiaojian, CHEN Xin, SONG Yongzhong. On the convergence radius of the modified Newton' s method for multiple roots under the eenter-H61der con- dition[J]. Numerical Algorithms, 2014, 65(2): 221- 232.
  • 5ZHOU Xiaoian, SONG Yongzhong. Convergence ra- dius of Osada's method under center-Helder continu- ous eondition[J]. Applied Mathematics and Computa- tion, 2014, 243(6): 809-816.
  • 6REN Hongmin, ARGYROS I. On the semi local conver gence of Halley's method under a cente Lipschitz condi- tion on the second Frchet derivative[J]. Applied Mathe- matics and Computation, 2012, 218(23): 11488-11495.
  • 7Schrtider E. I)ber unendlich viele Algorithmen zur Auflfisungder Gleichungen[J]. Math Ann, 1870(2) :317 -365.
  • 8Traub J. Iterative methods for the solution of equations [ J ]. Chelsea Publishing Company. New York, 1977.
  • 9Osada N. An optimal multiple root -finding method of order three [ J ]. J Comput Appl Math, 1994 (51 ) : 131 - 133.
  • 10Hansen E, Patrick M. A family of root finding methods [ J ]. Namer Math, 1977,27:257 - 269.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部