期刊文献+

机器人变刚度柔性关节实验装置研制

Development of Experimental Device for Robot Flexible Joint with Variable Stiffness
下载PDF
导出
摘要 针对本科生和研究生关于共融机器人的教学需求,采用基于阿基米德螺旋移位原理的支点调节机构具体化变刚度方案,研制了一套具有“模块化程度高、刚度调节范围宽、具有可拓展性”等优点的机器人变刚度柔性关节实验装置。该装置可用于关节刚度标定、关节刚度调节等实验教学,涵盖机械原理、机械设计、传感与测试技术、机电伺服系统设计等课程内容,有助于学生深入了解共融机器人特性,进一步提升学生的实践动手能力。 Aiming at the teaching needs of the coexisting-cooperative-cognitive robot,a set of variable stiffness joint for robot experimental device with the advantages of high modularity,wide stiffness adjustment range,and expansibility is developed by using pivot adjustment mechanism based on Archimedes spiral relocation principle.The device can be used to carry out the experimental teaching of joint stiffness calibration and stiffness adjustment,covering the course contents of mechanical principle,mechanical design,sensing and testing technology,electromechanical servo system design,etc.It helps students to understand the characteristics of the coexisting-cooperative-cognitive robot and further improve their practical ability.
作者 崔士鹏 黄文涛 魏承 刘佳男 谷海宇 CUI Shipeng;HUANG Wentao;WEI Cheng;LIU Jianan;GU Haiyu(School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China;School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出处 《实验室研究与探索》 CAS 北大核心 2023年第12期63-67,共5页 Research and Exploration In Laboratory
基金 黑龙江省高等教育教学改革研究重点委托项目(SJGZ20210017) 黑龙江省高等教育教学改革研究项目(SJGY20210259)。
关键词 共融机器人 变刚度柔性关节 实验装置 实验教学 coexisting-cooperative-cognitive robot variable-stiffness flexible joint experimental device experimental teaching
  • 相关文献

参考文献7

二级参考文献70

  • 1李军强,朱文正,姜与,李铁军.基于磁流变原理的变刚度驱动方法研究[J].仪器仪表学报,2021,42(3):97-104. 被引量:6
  • 2王文雪,吴晓宇,张帆.变刚度医疗机械臂结构设计[J].机械设计,2019,36(S02):20-22. 被引量:3
  • 3Blickhan R. The spring-mass model for running and hopping[J]. Journal of Biomechanics, 1989, 22(11/12): 1217-1227.
  • 4Blickhan R, Seyfarth A, Geyer H, et al. Intelligence by me- chanics[J]. Philosophical Transactions of the Royal Society, A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850): 199-220.
  • 5Hutter M, Remy C D, Hoepflinger M A, et al. High compliant series elastic actuation for the robotic leg scarleth[C]//14th In- ternational Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Singapore: World Scientific Publishing, 2012: 507-514.
  • 6Seyfarth A, Iida F, Tausch R, et al. Towards bipedal jogging as a natural result of optimizing walking speed for passively com- pliant three-segmented legs[J]. International Journal of Robotics Research, 2009, 28(2): 257-265.
  • 7Hobara H, lnoue K, Muraoka T, et al. Leg stiffness adjustment for a range of hopping frequencies in humans[J]. Journal of Biomechanics, 2010, 43(3): 506-511.
  • 8Ferris D E Louie M, Farley C T. Running in the real world: Ad- justing leg stiffness for different surfaces[J]. Proceedings of the Royal Society, B: Biological Sciences, 1998, 265(1400): 989- 994.
  • 9Arampatzis A, Bruggemann G P, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running[J]. Journal of Biomechanics, 1999, 32(12): 1349-1353.
  • 10Riese S, Seyfarth A. Stance leg control: Variation of leg param- eters supports stable hopping[J]. Bioinspiration & Biomimetics, 2012, 7(1): 016006.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部