期刊文献+

TEOS-GO掺杂的银基离子聚合物金属复合材料的制备及其致动性能

Preparation and Actuation Performances of Silver-Based Ion Polymer Metal Composites Doped with TEOS-GOs
下载PDF
导出
摘要 离子聚合物金属复合材料(IPMC)是一种新型的电驱动软材料,具有质量轻、驱动电压低的优点,但也存在输出力较小、驱动时间短的缺点,限制了其应用前景。提出了一种在基膜内掺杂硅酸乙酯-氧化石墨烯(TEOS-GO)以提高保水性和驱动能力的银基IPMC,通过对纯Nafion IPMC与TEOS-GO/Nafion IPMC致动器的含水量、尖端位移、输出力和稳定性等参数的测试,证实优化后IPMC的驱动性能有明显的提升。实验结果表明,掺杂质量分数1.5%TEOS-GO的IPMC在3 V直流电压下,尖端位移达到16.579 mm,相当于纯Nafion IPMC的3.37倍;输出力最高达到0.439 gf(1 gf=9.8 mN),是纯Nafion IPMC的5倍。这种改进方式弥补了IPMC用于致动器的缺点,为今后的发展开拓了前景。 Ionic polymer metal composite(IPMC)is a new kind of electric driven soft material,and has advantages such as light weight and low driving voltage.However,it also has limitations such as small output force and short driving time,which restrict its application prospects.A silver-based IPMC with ethyl silicate-graphene oxide(TEOS-GO)doped in the base film to improve water retention and driving capability was proposed.By measuring water content,tip displacement,output force and stability of pure Nafion IPMC and TEOS-GO/Nafion IPMC soft actuators,it is confirmed that the driving performance of the optimized IPMC has been significantly improved.The experimental results show that the tip displacement of IPMC doped with 1.5%mass fraction TEOS-GO reaches 16.579 mm at 3 V DC voltage,which is 3.37 times that of pure Nafion IPMC.The maximum output force reaches up to 0.439 gf(1gf=9.8 mN),which is 5 times that of pure Nafion IPMC.The optimization approach addresses the drawbacks of IPMC for actuators and opens up prospects for future development.
作者 李星震 李廷鱼 郭丽芳 李银辉 李朋伟 胡珂祺 Li Xingzhen;Li Tingyu;Guo Lifang;Li Yinhui;Li Pengwei;Hu Keqi(School of Electronic Information and Optical Engineering,Taiyuan University of Technology,Jinzhong 030600,China)
出处 《微纳电子技术》 CAS 2024年第3期75-82,共8页 Micronanoelectronic Technology
基金 山西省自然科学研究面上项目(20210302123157) 山西省回国留学人员科研资助项目(2023-052)。
关键词 离子聚合物金属复合材料(IPMC) 致动性能 硅酸乙酯-氧化石墨烯(TEOS-GO) 柔性致动器 NAFION 表面电极 ionic polymer metal composite(IPMC) actuation performance ethyl silicategraphene oxide(TEOS-GO) flexible actuator Nafion surface electrode
  • 相关文献

参考文献2

二级参考文献26

  • 1Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication ofphotonic wire and crystal circuits in silicon- on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076-4083.
  • 2Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOl photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328-1330.
  • 3Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12 (4): 615-626.
  • 4Ng H, Wang M R, Li D, Wang X, Martinez J, Panepucci R R, Pathak K. 1 × 4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. 1EEE Photonics Technology Letters, 2007, 19(9): 704-706.
  • 5Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes- Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomotecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148-155.
  • 6Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852-9858.
  • 7Guarino A, Poberaj G, Rezzonico D, Degl'innocenti R, Gunter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407-410.
  • 8Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660-668.
  • 9Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298-20304.
  • 10Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill 1985, 36-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部