期刊文献+

More tree growth reduction due to consecutive drought and its legacy effect for a semiarid larch plantation in Northwest China

下载PDF
导出
摘要 Extreme climate has increasingly led to negative impacts on forest ecosystems globally,especially in semiarid areas where forest ecosystems are more vulnerable.However,it is poorly understood how tree growth is affected by different drought events.In 2006–2009,the larch plantations in the semiarid areas of Northwest China were negatively affected by four consecutive dry years,which was a very rare phenomenon that may occur frequently under future climate warming.In this study,we analyzed the effect of these consecutive dry years on tree growth based on the data of the tree rings in the dominant layer of the forest canopy on a larch plantation.We found that the tree-ring width index(RWI)in dry years was lower than that in normal years,and it experienced a rapidly decreasing trend from 2006 to 2009(slope=-0.139 year^(-1),r=-0.94)due to water supply deficits in those dry years.Drought induced legacy effects of tree growth reduction,and consecutive dry years corresponded with greater growth reductions and legacy effects.Growth reductions and legacy effects were significantly stronger in the third and fourth consecutive dry years than that of single dry year(p<0.05),which might have been due to the cumulative stress caused by consecutive dry years.Our results showed that larch trees experienced greater tree growth reduction due to consecutive dry years and their legacy effect,and the trees had lower recovery rates after consecutive dry years.Our results highlight that consecutive dry years pose a new threat to plantations under climate warming,and thus,the effect of climate extremes on tree growth should be considered in growth models in semiarid areas.
出处 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期188-196,共9页 林业研究(英文版)
基金 the National Natural Science Foundation of China(Nos.42161144008 U21A2005 U20A2085) the National Key Research and Development Program of China(2022YFF0801804 2022YFF0801803 2022YFF1300404)。
  • 相关文献

参考文献5

二级参考文献38

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部