期刊文献+

对称NARMA-U模型及其神经网络自校正控制器

Symmetric NARMA-U Model and Its Neural Network Self-Tuning Controller
下载PDF
导出
摘要 带预测误差补偿的改进NARMA-L2模型是由NARMA模型在自适应滤波动态工作点处一阶泰勒展开逼近得出的,在自适应滤波动态工作点处二阶泰勒展开逼近可得到对称NARMA-U模型,采用BP神经网络辨识对称NARMA-U模型参数,提出一广义目标函数,基于对称NARMA-U模型的非线性系统的神经网络自校正控制器,应用直接极小化指标函数自适应优化算法对BP神经网络连接权重值进行在线学习。仿真研究表明算法的响应优良。 NARMA-L2 model with prediction error compensation was approached by NARMA model's first-order Taylor expansion at adaptive filtering dynamic working point.By second order Taylor expansion approaching at the adaptive filtering dynamic working point,a symmetric NARMA-U model was obtained.By using BP neural net work identifying symmetrical NARMA-U model parameters,a generalized object function was developed.Based on the nonlinear system neural net work self-tuning controller of symmetrical NARMA-U model developed,on-line learning of BP neural net connection weight value was conducted by using adaptive optimization algorithm for direct minimization of index function.Simulation results indicate that the model shows excellent response。
作者 侯小秋 HOU Xiaoqiu(School of Electronics and Controlling Engineering,Heilongjiang University of Science and Technology,Haerbin 150022,China)
出处 《中央民族大学学报(自然科学版)》 2024年第1期54-60,共7页 Journal of Minzu University of China(Natural Sciences Edition)
关键词 神经网络自校正控制器 非线性系统 对称NARMA-U模型 直接极小化指标函数自适应优化算法 neural net work self-tuning controller nonlinear system symmetric NARMA-U model adaptive optimization algorithm for direct minimization of index function
  • 相关文献

参考文献10

二级参考文献37

  • 1闫召洪,仇小杰,黄金泉,鲁峰.航空发动机推力衰退缓解的神经网络控制[J].航空动力学报,2020,35(4):844-854. 被引量:9
  • 2吴行健.非线性系统神经网络控制的现状与展望[J].临沂师范学院学报,2005,27(6):94-98. 被引量:2
  • 3韩志涛,井元伟,段晓东,张嗣瀛.一般非线性系统的相关阶与线性化[J].控制与决策,2006,21(9):1065-1067. 被引量:7
  • 4陈树中.奇次Hammerstein系统自适应算法的自校正性和稳定性[J].自动化学报,1984,10(2):162-168.
  • 5Isermann R,Lachmann K H,Matko D.Adaptive control systems[M].New Jersey:Prentice-Hall International,1992:43-45.
  • 6Anbumani K,Patnaik L,Sarma I.Self-tuning minimum variance control of nonlinear systems of the Hammerstein model[J].IEEE Transations on Automatic Control,1981,26(4):959-961.
  • 7Lacbmann,K H.Parameter adaptive control of a class of nonlinear process[C] ∥6th IFAC Symp.Identification and System Parameter Estimation,Bekey G A,Saridis G N,Washington DC:Pergamon Press,1982:372-378.
  • 8Agarwal M,Seborg P E.Self-tuning controllers for nonlinear systems[J].Automatica,1987,23(1):209-214.
  • 9Kung M C,Womack B F.Stability analysis of a discrete time adaptive control algorithm having a polynomial input[J].IEEE Transactions on Automatic Control,1983,28(12):1110-1112.
  • 10Graham C G,Kwai S S.Adaptive filtering,prediction and control[M].New Jersey:Prentice-Hall International,1984:235-240.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部