摘要
带预测误差补偿的改进NARMA-L2模型是由NARMA模型在自适应滤波动态工作点处一阶泰勒展开逼近得出的,在自适应滤波动态工作点处二阶泰勒展开逼近可得到对称NARMA-U模型,采用BP神经网络辨识对称NARMA-U模型参数,提出一广义目标函数,基于对称NARMA-U模型的非线性系统的神经网络自校正控制器,应用直接极小化指标函数自适应优化算法对BP神经网络连接权重值进行在线学习。仿真研究表明算法的响应优良。
NARMA-L2 model with prediction error compensation was approached by NARMA model's first-order Taylor expansion at adaptive filtering dynamic working point.By second order Taylor expansion approaching at the adaptive filtering dynamic working point,a symmetric NARMA-U model was obtained.By using BP neural net work identifying symmetrical NARMA-U model parameters,a generalized object function was developed.Based on the nonlinear system neural net work self-tuning controller of symmetrical NARMA-U model developed,on-line learning of BP neural net connection weight value was conducted by using adaptive optimization algorithm for direct minimization of index function.Simulation results indicate that the model shows excellent response。
作者
侯小秋
HOU Xiaoqiu(School of Electronics and Controlling Engineering,Heilongjiang University of Science and Technology,Haerbin 150022,China)
出处
《中央民族大学学报(自然科学版)》
2024年第1期54-60,共7页
Journal of Minzu University of China(Natural Sciences Edition)