期刊文献+

Network pharmacology and computational analysis of berberine and kuwanon Z as possible natural antiviral compounds in COVID-19

下载PDF
导出
摘要 Background:Global efforts to discover effective therapeutic agents for combating coronavirus disease 19(COVID-19)have intensified the exploration of natural compounds with potential antiviral properties.In this study,we utilized network pharmacology and computational analysis to investigate the antiviral effects of Berberine and Kuwanon Z against severe acute respiratory syndrome coronavirus 2,the viruses responsible for COVID-19.Method:Utilizing comprehensive network pharmacology approaches,we elucidated the complex interactions between these compounds and the host biological system,highlighting their multitarget mechanisms.Network pharmacology identifies COVID-19 targets and compounds through integrated protein‒protein interaction and KEGG pathway analyses.Molecular docking simulation studies were performed to assess the binding affinities and structural interactions of Berberine and Kuwanon Z with key viral proteins,shedding light on their potential inhibitory effects on viral replication and entry.Results:Network-based analyses revealed the modulation of crucial pathways involved in the host antiviral response.Compound-target network analysis revealed complex interactions(122 nodes,121 edges),with significant interactions and an average node degree of 1.37.KEGG analysis revealed pathways such as the COVID-19 pathway,chemokines and Jak-sat in COVID-19.Docking studies revealed that Kuwanon Z had binding energies of-10.5 kcal/mol for JAK2 and-8.1 kcal/mol for the main protease.Conclusion:The findings of this study contribute to the understanding of the pharmacological actions of Berberine and Kuwanon Z in the context of COVID-19,providing a basis for further experimental validation.These natural compounds exhibit promise as potential antiviral agents,offering a foundation for the development of novel therapeutic strategies in the ongoing battle against the global pandemic.
机构地区 y.
出处 《Pharmacology Discovery》 2024年第1期31-43,共13页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部