期刊文献+

框架-摇摆墙结构损伤后受力性能分析

Mechanical Behavior Analysis of Frame-Rocking Wall Structures After Being Damaged
下载PDF
导出
摘要 基于已有的离散-连续参数模型,对损伤后框架-摇摆墙结构的受力性能进行了研究。假定损伤只发生在框架结构上,没有实现“强柱弱梁”的损伤方式,损伤以柱端产生塑性铰的形式出现。研究结果表明:相比未损伤前,损伤后结构的侧向变形有一定的增加,结构最大内力有增有减,二者数值大小的变化与产生塑性铰楼层位置和塑性铰的形式有关。对于框架-摇摆墙结构,有目的地设置薄弱层,对降低结构内力,使层间相对变形趋于均匀是有利的。 In this paper,the mechanical behavior of frame-rocking wall structures(FRWSs)after being damaged has been investigated based on the discrete-continuum parametric model.It’s assumed the damage only occurs in the RC frame,and the mode of‘strong column and weak beam’is not realized.The damage appears in the way of plastic hinges at the column ends.The research results demonstrate that compared with the undamaged FRWS,all the maximum lateral deformations after being damaged increase,but the change of maximum internal forces has no clear law.The variation of both are related to the locations of the floors where the plastic hinges generate and the form of the plastic hinges.Finally,a conclusion can be drawn that it’s beneficial to reduce the internal forces and make the inter-story drifts uniform if a weak story is set intentionally for a FRWS.
作者 林坚豪 陈跃 李青倩 LIN Jianhao;CHEN Yue;LI Qingqian(Zhejiang Engineering Technology Research Center for Civil Engineering Industrialized Construction,Ningbo University of Technology,Ningbo 315211,China)
出处 《结构工程师》 2024年第1期62-71,共10页 Structural Engineers
基金 2020年浙江省大学生科技创新活动计划暨新苗人才计划科技创新项目(2020R475006) 宁波市公益性科技计划项目(2022S170) 2023年度浙江省建设科研项目 2023年度宁波市建设科研项目。
关键词 框架-摇摆墙 参数模型 层屈服机制 塑性铰 frame-rocking wall parametric model story yield mechanism plastic hinge
  • 相关文献

参考文献7

二级参考文献70

  • 1徐佳琦,吕西林.基于能量的框架-摇摆墙结构与框架-剪力墙结构地震反应分析对比[J].建筑结构,2013,43(S2):418-422. 被引量:7
  • 2吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006,15(2):107-114. 被引量:115
  • 3Ajrab J J, Pekcan G, Mander J B. Rocking wall-flame structures with supplemental tendon systems[J]. Journal of Structural Engineering, 2004, 130(6) : 895- 903.
  • 4Midorikawa M, Azuhata T, Ishihara T, et al. Shaking table tests on seismic response of steel braced frames with column uplifts [ J ]. Earthquake Engineering and Structural Dynamics, 2007, 35 (14) : 1767-1785.
  • 5Marriott D, Pampanin S, Bull D, et al. Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions [ J ]. Bulletin of the New Zealand Society for Earthquake Engineering, 2008, 41(2) : 90-103.
  • 6Deierlein G G, Ma X, Eatherton M, et al. Collaborative research on development of innovative steel braced frame systems with controlled rocking and replaceable fuses[ C ]// Proceedings of the 6th International Conference on Urban Earthquake Engineering. Tokyo, Japan: CUEE, 2009: 413-416.
  • 7Wada A, Qu Z, Ito H, et al. Seismic retrofit using rocking walls and steel dampers [ C ]// ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco, US:ASCE, 2009: 1010-1021.
  • 8MacRae G A, Kimura Y, Roeder C. Effect of column stiffness on braced frame seismic behavior[ J]. Journal of Structural Engineering, ASCE, 2004, 130(3): 381- 391.
  • 9Wada A, Uchiyama Y, Motoyui S, et al. Seismic retrofit of existing RC building with rocking wall: part 1: retrofit plan and steel damper experiment [ C ]// Summaries of Technical Papers of Annual Meeting. Tokyo: Architectural Institute of Japan, 2010, C-2: 623-624. (in Japanese).
  • 10Technical recommendation on energy-based seismic design [ S ]. Tokoy: The Building Center of Japan, 2006. (in Japanese).

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部