摘要
基于2011—2019年中国上市企业面板数据,运用超效率SBM模型测算中国企业绿色创新效率,并实证检验数字金融对企业绿色创新效率的正向影响,进一步运用机器学习—随机森林模型研究数字金融对企业绿色创新效率的非线性效应。研究结果表明:数字金融能够赋能企业绿色创新效率提升,且对国有、大规模以及高污染企业绿色创新效率的赋能效应更强;数字金融可以通过缓解融资约束和降低金融风险间接促进企业绿色创新效率提升;数字金融对企业绿色创新效率的作用存在网络效应。
Based on panel data of Chinese listed companies from 2011 to 2019,the super efficiency SBM model is used to measure the green innovation efficiency of Chinese enterprises,and the impact and mechanism of digital finance on the green innovation efficiency of enterprises are empirically tested.Furthermore,the machine learning random forest model is used to study the nonlinear effect of digital finance on the green innovation efficiency of enterprises.The research results indicate that digital finance can empower enterprises to improve their green innovation efficiency,and has a stronger empowering effect on the green innovation efficiency of state-owned,large-scale,and high polluting enterprises;Digital finance can indirectly promote the efficiency of green innovation in enterprises by alleviating financing constraints and reducing financial risks;There is a network effect of digital finance on the efficiency of green innovation in enterprises.
作者
周荣军
郑芳媛
ZHOU Rongjun;ZHENG Fangyuan(School of Economics and Law,Chaohu University,Chaohu 238000,China;School of Business,Xinyang Normal University,Xinyang 464000,China)
出处
《信阳师范学院学报(哲学社会科学版)》
2024年第2期41-48,共8页
Journal of Xinyang Normal University(Philosophy and Social Sciences Edition)
基金
河南省哲学社会科学基金项目(2020CJJ092)
信阳师范大学科研创新基金项目(2022KYJJ001)。
关键词
数字金融
绿色创新效率
融资约束
金融风险
digital finance
green innovation efficiency
financing constraints
financial risk