摘要
为了准确预测采用堆石体法填筑公路路基的填充泥浆强度和流动性,通过在传统GEP算法中引入最小二乘拟合,建立LS-GEP高效函数挖掘模型。通过分析大粒径填料填充泥浆的关键特性和影响因素,提出了灰土比、水土比和塑固比三个关键参数。通过30组不同配合比的泥浆性能试验,获取了学习样本,并利用LS-GEP高效函数挖掘模型,提出填充泥浆强度和流动性的预测公式。研究结果表明:这两个预测公式均是准确可靠的,可为填充泥浆配合比设计提供有效指导。在延庆至崇礼高速公路河北段的实际工程中,应用了泥浆特性智能预测公式,快速确定了泥浆配合比。在施工过程中,泥浆的各项性能指标均达到了预期效果,施工后采用堆石体法的大粒径填料填筑的台背路基性能良好。台背路基过渡段没有产生明显沉降,有效解决了桥头跳车问题。
In order to predict the filling mud strength and fluidity of highway subgrade with rockfill method quickly and accurately,the least square fitting is introduced into traditional GEP algorithm,and the LS-GEP efficient function mining model is established.Based on the analysis of the key characteristics and influencing factors of the large particle size filling mud,three key parameters of lime soil ratio,water soil ratio and plastic-solid ratio are put forward.Through 30 groups of mud performance tests with different mix ratios,learning samples were obtained,and LS-GEP efficient function mining model was used to predict the strength and fluidity of the filling mud,The results indicate that the two prediction formulas are accurate and reliable,and can provide effective guidance for the design of the mix ratio of the filling mud.In the actual engineering of the Hebei section of Yanqing to Chongli Expressway,the intelligent prediction formula of mud characteristics is applied to determine the mud mix quickly.During the construction process,various performance indicators of the filling mud have reached the expectations.The abutment subgrade constructed by using large particle size rockfill roadbed filling technology presents excellent performance,and no significant settlement has been observed,which the problem of vehicle jumping at the abutment has been solved effectively.
作者
于建游
朱颖杰
陈莉颖
YU Jianyou;ZHU Yingjie;CHEN Liying(Hebei Expressway Yanchong Management Center,Zhangjiakou 075400,China;North China University of Technology,Beijing 100144,China)
出处
《交通科学与工程》
2024年第1期28-35,共8页
Journal of Transport Science and Engineering
基金
河北省交通运输厅科技计划项目(YC-201931,TH1-202010)。
关键词
路基工程
智能预测
基因表达式编程
泥浆特性
堆石体
subgrade engineering
intelligent prediction
gene expression programming
mud properties
rockfill