期刊文献+

长期大气CO_(2)浓度升高对大豆磷吸收及根际磷转化的影响 被引量:1

Long-term effects of elevated atmospheric CO_(2) concentration on soybean phosphorus acquisition and soil phosphorus transformation in the rhizosphere of soybean
下载PDF
导出
摘要 磷(P)作为第二重要的植物营养元素,能够调节作物对气候变化的适应性。东北不同地区黑土有机质含量存在着较大差异,对作物营养吸收产生较大影响。然而,长期大气CO_(2)浓度升高对不同有机质含量黑土大豆生长、土壤磷组分以及相关微生物机制的影响鲜有研究。本研究利用开顶式生长室(OTC)重点探究了气候变化对不同有机质黑土大豆根际土壤磷组分和相关磷转化微生物功能基因的影响。结果表明,不同有机质含量的黑土大豆磷吸收对长期大气CO_(2)浓度升高的响应一致,既先升高后降低。然而,大豆根际磷组分的响应存在差异性。大气CO_(2)浓度升高降低了高有机质黑土中大豆根际NaHCO_(3)-P_(o)含量,但增加了低有机质黑土中大豆根际有机磷库(NaHCO_(3)-P_(o)和NaOH-Po)的含量,而降低了无机磷库(NaOH-Pi)的含量。同时,大气CO_(2)浓度升高使高有机质黑土根际土壤基因拷贝数增加53.0%,低有机质黑土中大豆根际土壤基因拷贝数增加44.4%。因此,长期气候变化条件下,高有机质含量黑土通过有机磷矿化功能微生物来满足大豆对磷素的需求;而在低有机质含量黑土中,长期高CO_(2)浓度主要影响无机磷组分以及相关功能基因。 Phosphorus(P),the second important plant nutrient,regulates crop adaptation to climate change.The organic matter content of Mollisols in different areas of Northeast China is quite different,which greatly influences crop nutrient absorption.How-ever,few studies have investigated the long-term effects of elevated CO_(2) concentration on soybean growth,soil phosphorus fraction and relevant microbial mechanisms with different organic matter content of Mollisols.The study used open-top growth chambers to mainly investigate the effects of elevated CO_(2) on soil phosphorus fractions and relevant functional genes in Mollisols with different organic matter content.The results showed that the response of P uptake of soybean to the long-term elevated CO_(2) was the same change with different organic matter content,increasing first and then decreasing,while differences existed on P fractions in rhizo-sphere of soybean.Elevated CO_(2) decreased NaHCO_(3)-P_(o) fraction in high-SOM(H-SOM)soil,however,elevated CO_(2) favored the accumulation of organic fraction(NaHCO_(3)-P_(o) and NaOH-P_(o)),reduced inorganic fraction(NaOH-Pi)in low-SOM(L-SOM)soil.In addition,elevated CO_(2) concentration increased the copy numbers of phoC by 53.0%in H-SOM,but increased the copy numbers of pstS by 44.4%in L-SOM.Therefore,under long-term climate change,soybean can meet the P demand through organic P mineraliza-tion by soil microorganisms in H-SOM,while inorganic P and relevant functional genes are affected in L-SOM.
作者 郭丽丽 李彦生 于镇华 王光华 刘晓冰 张锦源 吴俊江 王国兵 金剑 GUO Lili;LI Yansheng;YU Zhenhua;WANG Guanghua;LIU Xiaobing;ZHANG Jinyuan;WU Junjiang;WANG Guobing;JIN Jian(Institute of Geography Henan Academy of Sciences,Land Science Research Center,Zhengzhou 450052,China;Key Laboratory of Mollisols Agroecology,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Harbin 150081,China;Soybean Research Institute,Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation,Ministry of Agriculture and Rural Affairs/Key Laboratory of Soybean Cultivation of Heilongjiang Province,Harbin 150086,China)
出处 《土壤与作物》 2024年第1期27-38,共12页 Soils and Crops
基金 黑龙江省自然科学重点项目(ZD2021D001) 河南省科学院科研启动项目(231801032) 中国科学院战略性先导科技专项(XDA28020201) 河南省科学院基本科研项目(220610196).
关键词 气候变化 有机质含量 磷组分 磷酸酶活性 磷转化功能基因 climate change organic content phosphorus fraction phosphatase activity phosphorus functional genes
  • 相关文献

参考文献7

二级参考文献237

共引文献313

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部