期刊文献+

基于多尺度卷积神经网络的滚动轴承故障诊断方法研究

Research on Fault Diagnosis Method of Rolling Bearings Based on Multi-Scale Convolution Neural Network
下载PDF
导出
摘要 针对滚动轴承提取故障特征时容易被噪声干扰、依赖人工经验等问题,本文提出一种基于多尺度卷积神经网络(MCNN)的滚动轴承故障诊断方法。该方法首先利用多尺度数据预处理方法滤除振动信号中的高频噪声并进行数据增强,然后把多个时间尺度的振动信号输入到不同尺度下的一维卷积神经网络中,利用不同尺度的CNN提取滚动轴承振动信号中的不同特征,并将特征进行融合,从而得到滚动轴承更为全面的特征。该方法通过转子实验台验证,实验结果表明基于MCNN的滚动轴承故障诊断方法可以准确诊断出滚动轴承的故障类型,准确率高达100%。 Aiming at the problems that rolling bearings are easily disturbed by noise and rely on manual experience when extracting fault features,a rolling bearing fault classification method based on multi-scale convolution neural network was proposed in this chapter.In this method,the vibration signal is filtered out by multi-scale data preprocessing method and the data is enhanced,then the rolling bearing vibration signals of multiple time scales are input into one-dimensional convolution neural network with different scales.Different features of rolling bearing vibration signals are extracted by CNN of different scales,and the features are fused to obtain more comprehensive features of rolling bearings.The method was verified by the rotor test bench,and the experimental results showed that the rolling bearing fault classification method based on MCNN could accurately diagnose the fault types of rolling bearings,and the accuracy was 100%.
作者 丛旖文 CONG Yiwen(China Nanhu Academy of Electronics and Information Technology,Jiaxing 314002,China)
出处 《智能物联技术》 2023年第3期28-33,共6页 Technology of Io T& AI
关键词 多尺度预处理 卷积神经网络 故障诊断 滚动轴承 multi-scale preprocessing Convolutional Neural Networks fault diagnosis rolling bearings
  • 相关文献

参考文献3

二级参考文献144

  • 1汪洋,郭利进.一种新型DSCNN-GRU结构的减速机轴承故障诊断方法[J].机械科学与技术,2020,39(2):258-266. 被引量:9
  • 2贾民平,凌娟,许飞云,钟秉林.基于时序分析的经验模式分解法及其应用[J].机械工程学报,2004,40(9):54-57. 被引量:23
  • 3段晨东,何正嘉,姜洪开.非线性小波变换在故障特征提取中的应用[J].振动工程学报,2005,18(1):129-132. 被引量:13
  • 4胡桥,何正嘉,訾艳阳,张周锁,雷亚国.一种新的混合智能预测模型及其在故障诊断中的应用[J].西安交通大学学报,2005,39(9):928-932. 被引量:3
  • 5JOHNSON S B, GORMLEY TJ, KESSLER S S, et al. System health management with aerospaoce applications[M]. West Sussex, United Kingdom:John Wiley & Sons, Ltd. , 2011.
  • 6HESS A, FILA L. TheJoint strike fighter (JSF) PHM concept: Potential impact on aging aircraft problems[C] . Proceedings of 2002 IEEE Aerospace Conference, Big Sky, Montana, USA, 2002: 3021-3026.
  • 7V ACHTSEV AN OS G, LEWIS F, ROEMEr M. et al. Intelligent fault diagnosis and prognosis for engineering systems[M]. Hoboken, NewJersey, USA:John Wiley & Sons, Inc. , 2006: 1- 454.
  • 8PECHT M G. Prognostics and health management of electronics[M]. Hoboken, NewJersey, USA:John Wiley & Sons, Inc. , 2008:1-355.
  • 9TOBON-MEJIA D A, MEDJIAHER K, ZERHOUNI N, et al. A Data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[J]. IEEE Transactions on Reliability, 2012, 61 (2) : 491-503.
  • 10SCHW ABA VHER M. A survey of data-driven prognostics[C]. Proceedings of the AIAA Infotech @ Aerospace Conference, Reston, VA, USA, 2005:1-5.

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部