摘要
为提高轻度认知障碍(MCI)患者向阿尔茨海默症(AD)阶段病情进展的预测性能,提出一种融合病人多项检查数据进行学习的半监督神经网络新型模型MVIDG。通过mRMR算法对高维特征进行降维,对病人单项检查数据使用Dual-GCN进行基础模型训练,利用改进后的MVCDN网络对各项检查数据训练出的模型进行融合,以对未来一年内病人从MCI阶段向AD阶段的病情进展进行预测。实验结果表明,所提模型可有效整合病人多项检查结果以提高预测性能,效果优于其它数据融合方法。
To improve the prediction performance of patients with mild cognitive impairment(MCI)to the stage of Alzheimer’s disease(AD),a semi-supervised neural network model MVIDG was proposed that integrated multiple examination data of patients for learning.The dimensionality reduction of high-dimensional features was carried out through the mRMR algorithm,and the basic model training was performed on the patient’s single inspection data using Dual-GCN,and the improved MVCDN network was used to fuse the models trained by each inspection data,to predict the patient’s disease progression from MCI stage to AD stage in the next year.Experimental results show that the proposed model can effectively integrate multiple patient examination results to improve prediction performance,and the effect is better than that of other data fusion methods.
作者
董浩然
王顺芳
DONG Hao-ran;WANG Shun-fang(School of Information Science and Engineering,Yunnan University,Kunming 650504,China)
出处
《计算机工程与设计》
北大核心
2024年第3期889-895,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(62062067)
云南省智能系统与计算重点实验室开放课题基金项目(ISC22Z01)。
关键词
多维数据融合
深度学习
神经网络
疾病预测
阿尔茨海默症
轻度认知障碍
图卷积网络
multidimensional data fusion
deep learning
neural network
disease prediction
Alzheimer’s disease
mild cognitive impairment
graph convolution network