期刊文献+

多马尔可夫链协同的航班客舱保障过程预测

Prediction for flight cabin service process based on synergy of multi-Markov chains
下载PDF
导出
摘要 为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。 To perceive the dynamic evolution mechanism of each node in the flight cabin service process,a synergy of multi-Markov chains(SMMC)for flight cabin service process prediction method was proposed.According to the actual process and mutual constraint relationship of flight cabin service,a Markov model of cabin service process node coordination was constructed.Based on historical data as samples and to improve the DBSCAN clustering algorithm,a DBSCAN-SMMC prediction method for cabin service process was designed.The actual operation data of the flight operation service process of a large domestic airport were selected for simulation verification.Results show that the proposed method realizes the dynamic and accurate prediction for the occurrence time of each node.The mean absolute error is 0.606 min,and the mean root mean square error is 1.133 min.Compared with other methods,the mean absolute percentage error is reduced by at least 2%,and the goodness of fit is improved by 0.14.It can provide decision-making basis for the refined management of airport operations.
作者 邢志伟 刘鹏 李彪 罗谦 XING Zhi-wei;LIU Peng;LI Biao;LUO Qian(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China;Engineering Technology Research Center,The Second Research Institute of Civil Aviation Administration of China,Chengdu 610041,China)
出处 《计算机工程与设计》 北大核心 2024年第3期948-955,共8页 Computer Engineering and Design
基金 天津市研究生科研创新基金项目(2021YJSS116) 国家重点研发计划基金项目(2018YFB1601200)。
关键词 航空运输 客舱保障 节点预测 马尔可夫链 聚类算法 动态预测 仿真 air transportation cabin service node prediction Markov chain clustering algorithm dynamic prediction simulation
  • 相关文献

参考文献8

二级参考文献63

  • 1刘金洋,郭茂祖,邓超.基于雁群启示的粒子群优化算法[J].计算机科学,2006,33(11):166-168. 被引量:23
  • 2余雪岗,刘衍珩,魏达,田明.用于移动路径预测的混合Markov模型[J].通信学报,2006,27(12):61-69. 被引量:12
  • 3姚韵,朱金福,柏明国.航班过站地面服务的优化调度算法[J].信息与控制,2007,36(4):486-492. 被引量:19
  • 4BELLOTTI V, BEGOLE B, CHI E H, et al. Activity-based seren-dipitous recommendations with the Magitti mobile leisure guide [C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2008: 1157-1166.
  • 5GIDóFALVI G, BORGELT C, KAUL M, et al. Frequent route based continuous moving object location-and density prediction on road networks [C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2011: 381-384.
  • 6YING J J C, LEE W C, WENG T C, et al. Semantic trajectory mining for location prediction [C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2011: 34-43.
  • 7ABRAHAM S, SOJAN LAL P. Spatio-temporal similarity of net-work-constrained moving object trajectories using sequence alignment of travel locations [J]. Transportation research part C: emerging technologies, 2012, 23: 109-123.
  • 8FANG D. Moving object trajectory based spatio-temporal mobility prediction [D]. Stockholm: Royal Institute of Technology, 2012.
  • 9CHEN M, LIU Y, YU X. NLPMM: a next location predictor with Markov modeling [C]// PAKDD 2014: Proceedings of the 18th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2014: 186-197.
  • 10BURBEY I, MARTIN T L. Predicting future locations using prediction-by-partial-match [C]// Proceedings of the First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments. New York: ACM, 2008: 1-6.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部