期刊文献+

Study on regulating mechanisms of oxocrebanine obtained from Stephania hainanensis H.S.Lo et Y.Tsoong on microtubule sites and tubulin in human breast cancer MCF-7 cells

下载PDF
导出
摘要 Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocrebanine on microtubule network homeostasis at both molecular and cellular levels.Methods:the EBI site competition method and molecular docking method were used to determine the occupation of the microtubule site of oxocrebanine.Western Blot was used to detect the effect of oxocrebanine on microtubule-associated proteins including STAT3,PAK1,CAMK4,and PKA.Results:The results of EBI site competition assay showed that the binding of EBI toβ-Tubulin covalent fusions produced adducts that appeared in regions of lower molecular weight thanβ-tubulin(ctrl 2).Molecular docking results showed that oxocrebanine could occupy the colchicine site of microtubule proteins.As revealed by Western Blot,the expression of STAT3 protein was decreased after MCF-7 cells have been treated with low,medium,and high concentration of oxocrebanine or the positive drug taxol for 48 h(P<0.01).The expression levels of PAK1 and Camk4 proteins aslo showed significant reductions(P<0.05,or P<0.01).Oxocrebanine also decreased the PKA protein in MCF-7 cells compared to the control group(P<0.01).Conclusions:Oxocrebanine,a ligand that binds at the colchicine site of tubulin,perturbs tubulin polymerization and causes mitosis in MCF-7 cells,thus leading to MCF-7 cell death.Oxocrebanine may promote microtubule dynamics through stathmin by inhibiting the expression levels of STAT3,PAK1,Camk4,and PKA proteins in MCF-7 cells.Oxocrebanine interfers with spindle formation,and ultimately causes mitotic catastrophe in MCF-7 cells.
出处 《Journal of Hainan Medical University》 CAS 2023年第15期1-6,共6页 海南医学院学报(英文版)
基金 Natural Science Foundation of Hainan Province(No.820RC776)。
  • 相关文献

参考文献3

二级参考文献27

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部