期刊文献+

基于复合多尺度等概率符号化样本熵的两相流动态特性分析

Dynamic behavior analysis of two-phase flow based on composite multiscale equiprobable symbolic sample entropy
下载PDF
导出
摘要 多尺度样本熵(MSE)在两相流动态特性分析中存在两点不足:一是熵值无法单纯反映时间序列信息增长速率,在高尺度下稳定性较差;二是传统粗粒化过程中有部分数据信息丢失.针对上述问题,提出复合多尺度等概率符号化样本熵(CMESSE),并通过对几种典型非线性时间序列进行分析验证了其有效性.与MSE相比,CMESSE不仅能够有效表征不同动力系统非线性时间序列复杂性,而且在时间序列较短时稳定性更好.在此基础上分析了123组流动条件下垂直上升管内空气-水两相流压差波动时间序列.研究结果表明,泡状流、塞状流及混状流的CMESSE变化趋势能够在不同尺度下定性表征不同流型的动态特性,CMESSE复杂性指数可跨多尺度定量描述不同流型的动力学复杂性. Multiscale sample entropy(MSE)in dynamic behavior analysis of two-phase flow suffers from two shortcomings:One is that entropy value does not purely characterize the time series information generation rate,which makes the stability poor in high scale;The other is that the traditional coarse-graining process leads to some data information loss.For the above problems,composite multiscale equiprobable symbolic sample entropy(CMESSE)is proposed.Through the analysis of several typical nonlinear time series,the effectiveness of CMESSE is verified.Comparing with MSE,CMESSE not only effectively characterizes the complexity of nonlinear time series for different dynamic systems,but also shows better stability in short time series.Based on this,differential pressure fluctuation time series of air-water two-phase flow under 123 flow conditions in vertical upward tube are analyzed.The results show that the variation trend of CMESSE of bubble flow,slug flow and churn flow can qualitatively characterize the dynamic behavior of different flow patterns at different scales.The complexity index of CMESSE can quantitatively describe the dynamical complexity of different flow patterns across multiple scales.
作者 孙庆明 巴頔 钟林 王成龙 陈淑鑫 SUN Qingming;BA Di;ZHONG Lin;WANG Chenglong;CHEN Shuxin(School of Mechanical and Electrical Engineering,Qiqihar University,Qiqihar 161006,China;The Engineering Technology Research Center for Precision Manufacturing Equipment and Industrial Perception of Heilongjiang Province,Qiqihar 161006,China;Heilongjiang Province Collaborative Innovation Center for Intelligent Manufacturing Equipment Industrialization,Qiqihar 161006,China)
出处 《大连理工大学学报》 CAS CSCD 北大核心 2024年第2期127-137,共11页 Journal of Dalian University of Technology
基金 国家自然科学基金联合基金资助项目(U2031142) 黑龙江省省属本科高校基本科研业务费资助项目(145109204,145109411).
关键词 复合多尺度 符号化 样本熵 两相流 动态特性 composite multiscale symbolic sample entropy two-phase flow dynamic behavior
  • 相关文献

参考文献12

二级参考文献100

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部