摘要
目的鉴定识别流感病毒性肺炎(influenza virus pneumonia,IVP)线粒体相关生物标志物及银翘败毒散(Yinqiao Anti-infective Powder,YQAIP)潜在治疗IVP的作用机制。方法使用机器学习算法[随机森林(random forest,RF)模型、支持向量机(support vector machines,SVM)、分布式梯度增强模型(eXtreme gradient boosting,XGBoost)、广义线性模型(generalize linear model,GLM)]分析IVP小鼠的4个基因表达数据集(GSE63786、GSE37572、GSE43302和GSE97555),以识别IVP和线粒体相关的生物标志物。从TCMSP、PubMed、中国知网数据库获取银翘败毒散化学成分。通过分子对接研究IVP相关线粒体基因与YQAIP化学成分的相互作用。将BALB/c小鼠随机分为对照组,模型组,YQAIP低、中、高剂量(相当于生药15、30、60 g/kg)组和奥司他韦组,除对照组外,流感病毒感染小鼠,采用HE染色观察IVP小鼠病理的变化和生存情况,检测各组小鼠的肺指数、炎症因子水平、病毒载量以及线粒体关键基因的mRNA及蛋白表达水平。结果7个线粒体相关基因(Lactb、Cmpk2、Pnpt1、Mthfd2、Mrpl21、Mrpl45和Timm23)被鉴定为与流感病毒感染相关的生物标志物。YQAIP的1093种生物活性成分对生物标志物Lactb、Pnpt1和Mthfd2表现出较强的结合亲和力(≤−5.0 kcal/mol)。YQAIP能有效改善IVP小鼠肺组织的炎症病理变化,延长存活时间,降低肺指数、肺组织炎症因子水平及病毒载量,抑制线粒体关键基因Pnpt1、Mthfd2、Lactb的表达。结论7个线粒体相关基因Lactb、Cmpk2、Pnpt1、Mthfd2、Mrpl21、Mrpl45和Timm23可作为治疗IVP的潜在靶点。通过靶向线粒体基因可能是YQAIP治疗IVP的潜在作用机制之一。
Objective To identify mitochondrial related biomarkers of influenza virus pneumonia and potential therapeutic mechanisms of Yinqiao Anti-infective Powder(银翘败毒散,YQAIP).Methods Four gene expression datasets from IVP mice(GSE63786,GSE37572,GSE43302,and GSE97555)were analyzed by using machine learning algorithms[random forest(RF)model,support vector machines(SVM),eXtreme gradient boosting(XGBoost),generalized linear model(GLM)]to identify IVP and mitochondria-related biomarkers.YQAIP active components were acquired from TCMSP database,PubMed,CNKI and other databases.Conducted molecular docking to study the interaction between IVP-related mitochondria genes and bioactive ingredients of YQAIP.The mice were randomly divided into control group,model group,YQAIP low,medium,and high doses(15,30,60 g raw medicinal herbs/kg)group,and oseltamivir group.The lung index and survival protection experiments were conducted on influenza virus infected mice,and the HE pathology,lung index,survival status,inflammatory factor levels,viral load,and the expression levels of key mitochondrial genes were examined in IVP mice.Results Seven mitochondria-related genes(Lactb,Cmpk2,Pnpt1,Mthfd2,Mrpl21,Mrpl45,and Timm23)were identified as biomarkers associated with IVP infection.A total of 1093 bioactive ingredients of YQAIP showed strong binding affinity(≤−5.0 kcal/mol)to biomarkers Lactb,Pnpt1,and Mthfd2.YQAIP can effectively improve the inflammatory and pathological changes in the lung tissue of IVP mice,prolong survival time,inhibit lung index and pneumonia factor levels,reduce lung viral load,and inhibit the expression of key mitochondrial genes Pnpt1,Mthfd2,and Lactb.Conclusion Seven mitochondria-related genes(Lactb,Cmpk2,Pnpt1,Mthfd2,Mrpl21,Mrpl45,and Timm23)can be used as therapeutic potential targets for IVP.YQAIP may be effective treatments for IVP by targeting mitochondrial genes.
作者
吴贞琳
吴煜佳
张悦瑶
冯文文
刘金元
徐培平
WU Zhenlin;WU Yujia;ZHANG Yueyao;FENG Wenwen;LIU Jinyuan;XU Peiping(Science and Technology Innovation Center,Guangzhou University of Chinese Medicine,Guangzhou 510405,China;Basic Medical College,Guangzhou University of Chinese Medicine,Guangzhou 510405,China)
出处
《中草药》
CAS
CSCD
北大核心
2024年第3期882-894,共13页
Chinese Traditional and Herbal Drugs
基金
国家自然科学基金“中医药防治病毒性肺炎基础研究”专项(No.82141208)。
关键词
银翘败毒散
流感病毒性肺炎
线粒体基因
生物标志物
机器学习
Yinqiao Anti-infective Powder
influenza viral pneumonia
mitochondrial gene
biomarker
machine learning