期刊文献+

Experimental and Numerical Investigation of Non-synchronous Blade Vibration Excitation in a Transonic Axial Compressor

原文传递
导出
摘要 The complex flow phenomenon of rotating instability(RI) and its induced non-synchronous vibration(NSV) have become a significant challenge as they continuously increase aerodynamic load.This study aims to provide an understanding of the non-synchronous blade vibration phenomenon caused by the rotating instability of a transonic axial compressor rotor.In this case,blade vibrations and non-synchronous excitation are captured by strain gauges and unsteady wall pressure transducer sensors.Unsteady numerical simulations for a full-annulus configuration are used to obtain the non-synchronous flow excitation.The results show that the first-stage rotor blade exhibits an NSV close to the first bending mode;NSV is accompanied by a sharp increase in pressure pulsation;amplitude can reach 20%,and unsteady aerodynamic frequency will lock in a structural mode frequency when the blade vibrates in a large-amplitude motion.The predicted NSV frequency aligns well with the experimental results.The dominant mode of circumferential instability flow structure is approximately 47% of the number blades,and the cell size occupies 2-3 pitches in the circumferential direction.The full-annulus unsteady simulations demonstrate that the streamwise oscillation of the shedding and reattachment vortex structure is the main cause of NSV owing to the strong interaction between the tip leakage and separation vortices near the suction surface.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期602-610,共9页 热科学学报(英文版)
基金 supported by the National Science and Technology Major Project (J2022-IV0010-0024) Sichuan Science and Technology Planning Project (2021YFG0182)。
  • 相关文献

参考文献6

二级参考文献36

  • 1Thompson D.W., King P.I., Hah C., Rabe D.C., (1998): Experimental and Computational Investigation of Stepped Tip Gap Effects on the Flowfield of a Transonic Axial-Flow Compressor Rotor. ASME paper 98-GT-90. Stockholm, Sweden.
  • 2Suder K.L., Celestina M.L., (1995): Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor, NASA–TM-106711.
  • 3Wisler D.C., (1985): Loss Reduction in Axial Flow Compressor Through Low-Speed Model Testing, ASME Journal of Turbomachinery, Vol.107, pp 354?363.
  • 4Smith G.D.J., Cumpsty N.A., (1984): Flow Phenomena in Compressor Casing Treatment, ASME Journal of Engr. for Gas Turbines and Power, Vol. 106, pp 532?541.
  • 5Dawes W.N., (1987): A Numerical Analysis of the Three Dimensional Viscous Flow in a Transonic Compressor Rotor and Comparison with Experiment, ASME Journal of Turbomachinery , Vol.109, pp 83?90.
  • 6Von Zante D.E., Strazisar A.J., Wood J.R., Hathaway M.D., Okiishi T.H., (2000): Recommendations for Achieving Accurate Numerical Simulation of Tip Clear- ance Flows in Transonic Compressor Rotors, ASME Journal of Turbomachinery. Vol.122, pp 733?741.
  • 7Behesti B.H., Trixeira J.A.; Ivey P.C., Ghorbanian K., Farhanieh B., (2004): Parametric Study of Tip Clearance-Casing Treatment on Performance and stability of a Transonic Axial Compressor, ASME Journal of Turbo- machinery , Vol. 126, pp 527-535.
  • 8Bergner J., Hennecke D.K., Hah C., (2005): Tip Clearance Variations of an Axial High-Speed Single Stage Transonic Compressor, ISABE -2005-1096, Munich, Germany.
  • 9Hah C., Bergner J., Schiffer H.P., (2006): Short Length- Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms, ASME paper GT2006-90045, Barcelona, Spain.
  • 10Bergner J., Hennecke D.K., (2004): Entwicklung von Verdichterrotoren für einen einstufigen transsonischen axial Verdichterprüfstand, DGLR Jahrestagung 2004, Dresden, Germany.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部