期刊文献+

轻量级网络在人脸表情识别上的新进展 被引量:1

New advances in lightweight networks for facial expression recognition
下载PDF
导出
摘要 作为人工智能领域的热门研究方向,人脸表情识别(facial expression recognition,FER)是让计算机获取人类感情最直接最有效的方式,在人机交互、智慧医疗、疲劳驾驶等研发课题中占据关键的技术地位。为了满足高识别率的应用需求,FER深度学习网络结构愈发复杂,占用了大量的计算资源和存储空间,严重影响了算法实时性的要求。围绕如何在有效提升模型运算速度的同时,保障模型的精度这一问题展开综述。首先,介绍了利用轻量级网络实现表情识别的重要数据集;其次,对用于人脸表情识别的经典轻量级网络模型进行了分析;再次,阐述了主要的网络轻量化方法的原理、特点及适用场景;最后,总结了轻量级网络在人脸表情识别研究中存在的问题和挑战,对未来的研究方向进行展望。 As a popular research direction in the field of artificial intelligence,FER is the most direct and effective way for computers to access human emotions.It occupies a key technical position in human-computer interaction,intelligent medical care,fatigue driving,and other R&D topics.In order to meet the application requirements of high recognition rate,the structure of FER deep learning network becomes more and more complex,occupying a large amount of computing resources and storage space,which seriously affects the real-time requirements of the algorithm.This paper focused on the problem of how to guarantee the accuracy of the model while effectively improving its computational speed.Firstly,it introduced the important datasets for expression recognition using lightweight networks.Secondly,it analyzed the classical lightweight network models used for facial expression recognition.Thirdly,it described the principles,characteristics,and applicable scenarios of the main network lightweighting methods.Finally,it summarized the problems and challenges of lightweight networks in facial expression recognition research and looked forward to the future research direction.
作者 蒋斌 崔晓梅 江宏彬 丁汉清 袁俊岭 Jiang Bin;Cui Xiaomei;Jiang Hongbin;Ding Hanqing;Yuan Junling(School of Computer Science&Technology,Zhengzhou University of Light Industry,Zhengzhou 450001,China)
出处 《计算机应用研究》 CSCD 北大核心 2024年第3期663-670,共8页 Application Research of Computers
基金 国家自然科学基金资助项目(61702464,62273243) 河南省科技攻关项目(222102210103,222102210039)。
关键词 人脸表情识别 轻量化网络 网络轻量化 深度学习 facial expression recognition lightweight network network lightweighting deep learning
  • 相关文献

参考文献10

二级参考文献68

共引文献112

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部