期刊文献+

融合时序关联动态图与常微分方程的区域间出租车需求预测

Inter-regional taxi demand forecasting based on time series correlationdynamic graph and ordinary differential equation
下载PDF
导出
摘要 为解决出租车行业中的高空驶率和不均衡的需求分布问题,通过对出租车出行的区域进行深入研究,提出了一个融合时序关联动态图与常微分方程的需求预测模型TCG-ODE(temporal correlation graphs-ordinary differential equations)。首先,模型使用ODE(ordinary differential equation)对图卷积神经网络(graph convolutional network,GCN)进行微分方程建模,将堆叠局部特征信息抽象为动态图,以节点的时序特性来推进局部节点状态;然后,设计了一种基于注意力分数调整采样策略的蒸馏方案,提高对多层稀疏图的适应效果,以更稳定地表征复杂时空特征,最终实现对区域间出租车需求量的预测。在真实的出租车订单数据集上进行实验,研究结果表明,TCG-ODE模型的预测效果均优于对照模型和改进前的模型。通过精准预测不同区域之间的出租车需求量,可以为出租车司机和乘客出行提供决策支持信息,从而优化供需关系。 ed the stacked local feature information into a dynamic graph.It advanced the local node state based on the timing characteristics of nodes.Then,it designed a distillation scheme based on the attention score adjustment sampling strategy to improve the adaptation effect to the multi-layer sparse graph,so as to more stably represent the complex spatio-temporal characteristics,and finally realized the prediction of inter-regional taxi demand.Experimental results conducted on real taxi order datasets demonstrate that the TCG-ODE model outperforms both benchmark models and the pre-improvement model in terms of demand prediction accuracy.By accurately forecasting taxi demand among different regions,this model provides decision support information for taxi drivers and passengers,thereby optimizing the supply-demand relationship.
作者 王海程 马纪颖 张苑媛 杨绍祖 Wang Haicheng;Ma Jiying;Zhang Yuanyuan;Yang Shaozu(School of Computer Science&Technology,Shenyang University of Chemical Technology,Shenyang 110142,China;Liaoning Provincial Key Laboratory of Intelligent Technology of Chemical Process Industry,Shenyang 110142,China)
出处 《计算机应用研究》 CSCD 北大核心 2024年第3期794-798,860,共6页 Application Research of Computers
基金 辽宁省自然基金资助项目(2022-MS-291) 国家外国专家计划资助项目(G2022006008L) 辽宁省教育厅基本科研资助项目(LJKMZ20220781)。
关键词 需求预测 图卷积神经网络 常微分方程 蒸馏方案 demand forecasting graph convolutional network(GCN) ordinary differential equation(ODE) distillation scheme
  • 相关文献

参考文献7

二级参考文献54

  • 1姚亚夫,曹锋.基于ARIMA的交通流量短时预测[J].交通科技与经济,2006,8(3):105-107. 被引量:10
  • 2Shimizu H,Yamagami K,Watansbe E. Application of State Estimation Algorithms to Hourly Traffic Volume System. Proceedings of Second World Congress on ITS ,Yokohama,1995:72-77.
  • 3Stephanedes Y J,Kwon E. Adaptive Deman-deversion Prediction for Integrated Control of Freeway Corridors. Transportation Research 1C,1993:23-42.
  • 4Cremer M,Keller H. A New Class of Dynamic Methods for the Identification of Origin-destination Flows. Transportation Research 21B,1987:17-32.
  • 5Luk J Y K. Modelling and Monitoring the Performance of Urban Traffic Control Network. Australian Road Research Board SR43,Victoria,Australia,1989.
  • 6Hunt P G,Robertson D I,Brethton R D,et al. SCOOT - a Traffic Responsive Method of Coordinating Signals. TRRL LR1014,Transport and Road Research Laboratory,Crowthorne,UK,1981.
  • 7Dougherty M S,Kirby H R,Boyee D. Using Neural Networks to Recognize,Predict and Model Traffic. Artificial Intelligence Application to Traffic Engnieering,1994: 235-250.
  • 8Ledoux C. An Urban Traffic Flow Model Intergrating Neural Network. Transportation Research 5C,1997:287-300.
  • 9Yun S Y,Namkoong S R,Shin J H,et al. A Performance Evaluation of Neural Network Models in Traffic Volume Forecasting. Mathematical and Computer Modelling,1998,27: 293-310.
  • 10Yin Hongbin,Wong S C,Xu Jianmin,.et al. Urban Traffic Flow Prediction Using a Fuzzy -neural Approach. Transportation Research 10C,2002: 85-98.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部