期刊文献+

基于BSCWEformer的退火炉内分组式辊速序列预测

Predicting Grouped Rollers Speed Series in Annealing Furnace Based on BSCWEformer
下载PDF
导出
摘要 退火炉内带钢的长度受到温度、张力等因素的影响而变化,导致辊的转速改变以及焊缝位置的不确定,从而威胁生产安全.为了准确预测辊的转速以计算焊缝的实时位置,本文提出基于带状稀疏柯西自注意力的BSCWEformer (banded sparse Cauchy weight enhanced Transformer)模型.模型采用带状稀疏的、使用基于相对位置计算的柯西分布权重值增强的自注意力结构,在提高相邻输入序列的重要性的同时,将自注意力的复杂度由二次方降低为线性.通过实际生产数据进行实验,并与LogSparse Transformer、Transformer、RNMT+等模型进行对比,得出本文所提出的BSCWEformer模型在退火炉内分组式辊速序列预测任务上具有较高的预测精度. The length of the strip steel in the annealing furnace is affected by temperature,tension,and other factors,resulting in changes in roller speed and uncertainty in weld position and threatening production safety.To accurately predict roller speed,this study proposes the banded sparse Cauchy weight enhanced Transformer(BSCWEformer) model.The model adopts a banded sparse self-attention structure enhanced by Cauchy distribution weight values calculated from relative positions,which improves the importance of adjacent input sequences and reduces the complexity of self-attention from quadratic to linear.Through experiments with actual production data and comparison with LogSparse Transformer,Transformer,RNMT+,and other models,the BSCWEformer model shows higher accuracy in predicting grouped roller speed series.
作者 岳晓光 石元博 YUE Xiao-Guang;SHI Yuan-Bo(School of Information and Control Engineering,Liaoning Petrochemical University,Fushun 113001,China;School of Artificial Intelligence and Software,Liaoning Petrochemical University,Fushun 113001,China)
出处 《计算机系统应用》 2024年第3期213-219,共7页 Computer Systems & Applications
基金 辽宁省教育厅科研项目(LJKMZ20220737)。
关键词 退火炉 带钢焊缝 带状稀疏 柯西分布权重 时间序列 annealing furnace strip steel weld seam banded sparse Cauchy distribution weight time series
  • 相关文献

参考文献1

二级参考文献10

  • 1Gao X D,Zhong X G,You D Y,et al.Kalman filtering compensated by radial basis function neural network for seam tracking of laser welding [J].IEEE Transactions on Control Systems Technology,2013,21(5):1916-1923.
  • 2Kaneko H,Arakawa M,Funatsu K.Novel soft sensor method for detecting completion of transition in industrial polymer processes [J].Computers and Chemical Engineering,2011,35:1135-1142.
  • 3Choi S W,Lee I B.Nonlinear dynamic process monitoring based on dynamic kernel PCA [J].Chemical Engineering Science,2004,59:5897-5908.
  • 4Hashemi A B,Meybodi M R.A note on the learning automata based algorithms for adaptive parameter selection in PSO [J].Applied Soft Computing,2011,11:689-705.
  • 5Siamak M,Suykens J A K.LS-SVM approximate solution to linear time varying descriptor systems [J].Automatica,2012,48:2502-2511.
  • 6Wang X F,Chen J D,Liu C B,et al.Hybrid modeling of penicillin fermentation process based on least square support vector machine [J].Chemical Engineering Research and Design,2010,88:415-420.
  • 7Dong S J,Luo T H.Bearing degradation process prediction based on the PCA and optimized LS-SVM model [J].Measurement,2013,46:3143-3152.
  • 8田松亚,史如森,朱晓华,杨全海,陈丽华.超声波传感器在波纹板折线焊缝跟踪中的应用[J].焊接学报,2010,31(12):97-100. 被引量:3
  • 9蒋华琴,赵成业,刘兴高.群智能优化LSSVM最优聚丙烯熔融指数预报[J].化工学报,2012,63(9):2794-2798. 被引量:3
  • 10马伟亮.宝钢热镀锌机组焊缝跟踪系统[J].冶金自动化,2013,37(1):53-56. 被引量:11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部