期刊文献+

溶液喷射纺丝参数对聚丙烯腈直径分布的影响

Effect of Solution Blow Spinning Parameters on Diameter Distribution of Polyacrylonitrile Fiber
下载PDF
导出
摘要 利用溶液喷射纺丝技术,成功制备聚丙烯腈纤维膜。采用扫描电镜观察纤维膜的形貌,探究不同纺丝工艺参数对纤维直径分布的影响。结果表明:纤维直径与聚合物质量分数、聚合物溶液挤出速度、喷丝孔内径呈正比,并且随上述工艺参数的增加,纤维直径分布较为离散;纤维直径与喷射气流的压强、接收距离呈反比,并且随上述工艺参数增加,纤维直径分布逐渐集中。经分析,获得最优工艺参数:聚合物质量分数为12%,喷射气流的压强为0.15 MPa,接收距离为70 cm,溶液挤出速度为0.3 mL/min,喷丝孔内径为0.32 mm。 In this study,polyacrylonitrile(PAN)fiber membrane had been fabricated successfully by the solution blow spinning technology.Meanwhile,the morphology of the PAN fiber membrane was analyzed by scanning electron microscopy(SEM)in order to further study the effect of different spinning process parameters on the diameter distribution of the fiber.The results show that the fiber diameter is proportional to the polymer mass concentration,polymer solution extrusion speed,and the inner diameter of the spinneret.In addition,the distribution of fiber diameter is more discrete with the increase of the above process parameters.Moreover,the fiber diameter is inversely proportional to the pressure of the jet stream and collection distance,and the distribution of fiber diameter is gradually concentrated with the increase of the above process parameters.After analysis,the optimal process parameters are obtained as follows:mass concentration of the polymers is 12%,the pressure is 0.15 MPa,the collection distance is 70 cm,the solution extrusion speed is 0.3 mL/min and the inner diameter of the spinneret is 0.32 mm.
作者 桂早霞 刘茜 孙光武 魏闯 Gui Zaoxia;Liu Qian;Sun Guangwu;Wei Chuang(School of Textiles and Fashion,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《针织工业》 北大核心 2024年第2期25-30,共6页 Knitting Industries
基金 国家自然科学基金青年科学基金项目(51703124)。
关键词 溶液喷射纺丝 聚丙烯腈 工艺参数 微纳米纤维 直径分布 纤维形貌 Solution Blow Spinning Polyacrylonitrile Process Parameters Micro-nano Fibers Diameter Distribution Fiber Morphology
  • 相关文献

参考文献6

二级参考文献38

  • 1李蒙蒙,朱瑛,仰大勇,蒋兴宇,马宏伟.静电纺丝纳米纤维薄膜的应用进展[J].高分子通报,2010(9):42-51. 被引量:30
  • 2姚永毅,朱谱新,叶海,钮安建,高绪珊,吴大诚.静电纺丝法和气流静电纺丝法制备聚砜纳米纤维[J].高分子学报,2005,15(5):687-692. 被引量:22
  • 3SHU Z, WOO S S, JOOYOUN K. Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency[J]. Materials & Design, 2009, 30(9): 3659-3666.
  • 4AUSSAWASATHIEN D, TEERAWATTANANON C, VONGACHARIYA A. Separation of micron to sub-miemnpartieles from water: electrospun nylon-6 nanofibrous membranes as pre-filters [J]. J. Membr. Sei., 2008, 315(1-2). 11-19.
  • 5刘太奇,张淑敏.一种夹心式纳米/亚微米电纺丝基过滤材料的制备方法:中国,200410029988.0[P].2005-01-12.
  • 6ZONG X H, KIM K, CHU B, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes [J ]. Polymer, 2002, 43(16): 4403-4412.
  • 7Hammel E, Tang X, Trampert M, et al. Carbon nanofi- bers for composite applications[J]. Carbon, 2004, 42(5-6): 1 153-1 158.
  • 8Kim C, Yang K S. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospirming[J]. Appl. Phys. Lett., 2003, 83(6): 1 216-1 218.
  • 9Niu H, Zhang J, Xie Z, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J]. Carbon, 2011, 49(7) 2 380-2 388.
  • 10Kim C, Ngoc B T N, Yang K S, et al. Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning ofpolyacrylonitrile solutions containing zinc chloride[J]. Adv. Mater., 2007, 19(17): 2 341-2 346.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部