摘要
考虑一类动态模糊系统,该系统由模糊Atangana-Baleanu分数阶微分包含和变分不等式组成,称为模糊分数阶微分变分不等式(FFDVI),它包括了模糊分数阶微分包含和变分不等式两个领域的研究,拓宽了模糊环境下的可研究问题,该模型在同一框架内捕获了模糊分数微分包含和分数微分变分不等式的期望特征.利用Krasnoselskii不动点定理,得到了FFDVI在某些温和条件下解的存在性.
We considered a class of dynamic fuzzy systems,which consisted of fuzzy Atangana-Baleanu fractional differential inclusion and variational inequalities,called fuzzy fractional differential variational inequalities(FFDVI).It included the two fields of fuzzy fractional differential inclusion and variational inequalities,expanding the researchable problems in fuzzy environments.The model captured the desired features of the fuzzy fractional differential inclusion and fractional differential variational inequalities within the same framework.By using Krasnoselskii fixed point theorem,the existence of solutions of FFDVI under some mild conditions was obtained.
作者
李慧敏
顾海波
LI Huimin;GU Haibo(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830017,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第2期222-236,共15页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11961069)
新疆优秀青年科技人才培训计划项目(批准号:2019Q022)
新疆维吾尔自治区自然科学基金(批准号:2019D01A71)
新疆师范大学青年拔尖人才计划项目(批准号:XJNUQB2022-14)。