期刊文献+

基于自表示和投影映射的不完整多视图聚类

Incomplete Multi-view Clustering Based on Self-representation and Projection Mapping
下载PDF
导出
摘要 针对不完整多视图聚类存在的缺陷,提出一种融合自表示和投影映射的统一框架.首先,利用自表示和样本存在指示矩阵学习一致相似图,它反映了样本间的公共相似关系;其次,利用投影映射将样本矩阵投影到超球面上,得到公共低维表示;最后,将两者通过谱表示嵌入在一起,解决了因多视图数据缺失引起的不完整多视图聚类问题.该算法在真实数据集上的实验结果优于其他算法,证明了算法的有效性. Aiming at the shortcomings of incomplete multi-view clustering,we proposed a unified framework that integrated self-representation and projection mapping.Firstly,self-representation and sample presence indication matrices were used to learn a uniform similarity graph,which reflected the common similarity relationship between samples.Secondly,the sample matrices were projected onto the hypersphere by using projection mapping to obtain a common low-dimensional representation.Finally,the two were embedded together through spectral representation to solve the incomplete multi-view clustering problem caused by missing multi-view data.The experimental results of this algorithm on real datasets are better than other algorithms,which proves the effectiveness of the proposed algorithm.
作者 赵翠娜 杨有龙 ZHAO Cuina;YANG Youlong(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期331-338,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61573266) 陕西省自然科学基础研究计划项目(批准号:2021JM-133)。
关键词 多视图聚类 不完整视图 自表示学习 投影映射 multi-view clustering incomplete view self-representation learning projection mapping
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部