摘要
针对不完整多视图聚类存在的缺陷,提出一种融合自表示和投影映射的统一框架.首先,利用自表示和样本存在指示矩阵学习一致相似图,它反映了样本间的公共相似关系;其次,利用投影映射将样本矩阵投影到超球面上,得到公共低维表示;最后,将两者通过谱表示嵌入在一起,解决了因多视图数据缺失引起的不完整多视图聚类问题.该算法在真实数据集上的实验结果优于其他算法,证明了算法的有效性.
Aiming at the shortcomings of incomplete multi-view clustering,we proposed a unified framework that integrated self-representation and projection mapping.Firstly,self-representation and sample presence indication matrices were used to learn a uniform similarity graph,which reflected the common similarity relationship between samples.Secondly,the sample matrices were projected onto the hypersphere by using projection mapping to obtain a common low-dimensional representation.Finally,the two were embedded together through spectral representation to solve the incomplete multi-view clustering problem caused by missing multi-view data.The experimental results of this algorithm on real datasets are better than other algorithms,which proves the effectiveness of the proposed algorithm.
作者
赵翠娜
杨有龙
ZHAO Cuina;YANG Youlong(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第2期331-338,共8页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61573266)
陕西省自然科学基础研究计划项目(批准号:2021JM-133)。
关键词
多视图聚类
不完整视图
自表示学习
投影映射
multi-view clustering
incomplete view
self-representation learning
projection mapping