期刊文献+

CONSERVATIVE CONFORMING AND NONCONFORMING VEMS FOR FOURTH ORDER NONLINEAR SCHRODINGER EQUATIONS WITH TRAPPED TERM

原文传递
导出
摘要 This paper aims to construct and analyze the conforming and nonconforming virtual element methods for a class of fourth order nonlinear Schrodinger equations with trapped term.We mainly consider three types of virtual elements,including H^(2) conforming virtual element,C^(0) nonconforming virtual element and Morley-type nonconforming virtual element.The fully discrete schemes are constructed by virtue of virtual element methods in space and modified Crank-Nicolson method in time.We prove the mass and energy conservation,the boundedness and the unique solvability of the fully discrete schemes.After introducing a new type of the Ritz projection,the optimal and unconditional error estimates for the fully discrete schemes are presented and proved.Finally,two numerical examples are investigated to confirm our theoretical analysis.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期454-499,共46页 计算数学(英文)
基金 supported by the NSF of China(Grant Nos.11801527,11701522,11771163,11671160,1191101330) by the China Postdoctoral Science Foundation(Grant No.2018M632791) by the Key Scientific Research Projects of Higher Eduction of Henan(Grant No.19A110034).
  • 相关文献

参考文献4

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部