期刊文献+

基于改进YOLOv5的远距离小目标检测方法研究 被引量:1

Research on long-range small target detection method based on improved YOLOv5
下载PDF
导出
摘要 针对实际情况中小目标人物在目标检测领域中存在识别率低、漏检、精度低等问题,本文提出一种基于改进YOLOv5的远距离小目标检测算法。通过提高数据集图片分辨率,增强目标的特征信息;在特征提取网络引入CABM注意力机制,提高模型提取小目标特征的能力;在特征融合网络引入BiFPN,提高了网络的多尺度特征融合能力和小目标特征识别的效果。与原YOLOv5算法相比,在神经网络模型体积大小变化不大的前提下,验证集数据集上检测精度提升了8%,召回率提高了6%。实验证明该改进方法对远距离小目标检测应用的有效性。 In view of the actual situation,small and medium-sized target people have problems such as low recognition rate,missed detection,and low accuracy in the field of target detection,this paper proposes a long-range small target detection algorithm based on the improved YOLOv5.Improve the image resolution of the dataset and enhance the feature information of the target;The CABM attention mechanism is introduced in the feature extraction network to improve the ability of the model to extract small target features.BiFPN is introduced into the feature fusion network,which improves the multi-scale feature fusion ability of the network and the effect of small target feature recognition.Compared with the original YOLOv5 algorithm,the detection accuracy and recall rate on the validation set dataset are improved by 8%and the recall rate is increased by 6%under the premise that the size of the neural network model does not change much.
作者 钱明 杨成佳 QIAN Ming;YANG Cheng-jia(School of electrical and computer science,Jilin Jianzhu university,Changchun 130118,China)
出处 《吉林建筑大学学报》 CAS 2024年第1期79-83,共5页 Journal of Jilin Jianzhu University
基金 吉林省教育厅科学技术研究项目(JJKH20240366KJ).
关键词 小目标检测 YOLOv5 网络优化 small target detection YOLOv5 network optimization
  • 相关文献

参考文献3

二级参考文献36

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献815

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部