摘要
延长高炉使用寿命、保证高炉炉况稳定顺行和降低高炉能源消耗已经成为现代高炉生产发展的主要方向,为实现这些目标,提高高炉炉缸活性被认为是至关重要的措施之一。炉缸活性可以揭示高炉内部的化学反应和热力学条件,有助于深入了解高炉冶炼过程的基本机理,合理评价炉缸活性对指导高炉生产有着重要意义。为此,首先从高炉生产现场采集的工艺数据出发,经过预处理和计算,得到高炉炉缸活跃性指数;然后,为了进一步提高预测准确性,采用特征选择方法以及冗余性分析,从众多参数中选取最具影响力的作为输入参数;最后,采用贝叶斯优化的XGBoost模型对高炉炉缸活性进行回归预测,同时对比了默认超参数的XGBoost模型与随机森林模型的回归效果。结果表明,贝叶斯优化的XGBoost模型在预测炉缸活性方面表现出卓越的性能,具有很好的泛化性和非线性拟合能力,取得了较好的预测效果。该研究结果为高炉生产提供了有力的决策依据,可以帮助优化操作参数、提高冶炼效率和降低能源消耗。
Prolonging the service life,ensuring stable running condition and reducing energy consumption of blast furnace have become the main direction of modern blast furnace production development.In order to achieve these goals,improving the activity of blast furnace hearth is considered to be one of the most important measures.The activity of the hearth can reveal the chemical reaction and thermodynamic conditions inside the blast furnace and help to understand the basic mechanism of the blast furnace smelting process,and reasonable evaluation of hearth activity is of great significance for guiding blast furnace production.Therefore,firstly,based on the process data collected from the blast furnace production site,the activity index of the blast furnace hearth was obtained after pretreatment and calculation.Then,in order to further improve the prediction accuracy,the feature selection method and redundancy analysis were adopted to select the most influential parameter from many parameters as the input parameter.Finally,the Bayesian optimization XGBoost model was used to predict the hearth activity by regression,and the regression effect of XGBoost model with default hyperparameters and random forest model was compared.The results show that the Bayesian optimization XGBoost model has excellent performance in predicting the hearth activity,the model has good generalization and nonlinear fitting ability,and the prediction effect is good.The research results provide a strong decision basis for blast furnace production,which can help optimize operating parameters,improve smelting efficiency and reduce energy consumption.
作者
刘小杰
温梁亦欣
张玉洁
李欣
刘然
吕庆
LIU Xiaojie;WEN Liangyixin;ZHANG Yujie;LI Xin;LIU Ran;LÜQing(School of Metallurgy and Energy,North China University of Science and Technology,Tangshan 063210,Hebei,China)
出处
《中国冶金》
CAS
CSCD
北大核心
2024年第2期83-95,共13页
China Metallurgy
基金
国家自然科学基金青年基金资助项目(52004096)。