期刊文献+

Machine learning of partial differential equations from noise data

下载PDF
导出
摘要 Machine learning of partial differential equations(PDEs)from data is a potential breakthrough for addressing the lack of physical equations in complex dynamic systems.Recently,sparse regression has emerged as an attractive approach.However,noise presents the biggest challenge in sparse regression for identifying equations,as it relies on local derivative evaluations of noisy data.This study proposes a simple and general approach that significantly improves noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise.This method enables accurate reconstruction of PDEs involving high-order derivatives,even from data with considerable noise.Additionally,we discuss and compare the effects of the proposed method based on Fourier subspace and POD(proper orthogonal decomposition)subspace.Generally,the latter yields better results since it preserves the maximum amount of information.
机构地区 School of Aeronautics
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期441-446,共6页 力学快报(英文版)
基金 the support of the National Natural Science Foundation of China(Grant No.92152301)。
  • 相关文献

参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部