期刊文献+

一种基于改进ORB特征匹配的无人机视觉导航方法

A UAV Visual Navigation Method Based on Improved ORB Feature Matching
下载PDF
导出
摘要 为了解决在全球导航卫星系统(Global Navigation Satellite System)拒止情况下无人机导航能力缺失等问题,提出了一种基于改进快速提取旋转描述子(Oriented FAST and Rotated Brief,ORB)图像特征匹配的无人机视觉导航方法。首先,为了实现无人机的绝对定位,提出了一种特征图像基准数据库构建方法;其次,为提取图像数据集的特征点,采用了一种结合尺度不变特征变换(Scale Invariant Feature Transform,SIFT)的尺度空间优化ORB特征提取算法;最后,为了将图像特征与图像基准数据库快速匹配并提高其匹配精度,提出了一种改进ORB特征匹配算法——ORB+GMS+PROSAC算法。通过在ArcGIS中分割图像构建基准数据库并进行实验分析,结果表明,基于ORB+GMS+PROSAC特征匹配算法性能显著提升,其中匹配准确率上升5.05%,匹配时间减少41.61%,明显优于其他传统特征匹配算法。 To solve the lack of UAV navigation capability in the case of GNSS-denied,an improved method of UAV visual navigation based on ORB image feature matching is proposed.First,a method for constructing a feature image benchmark database is proposed to achieve the absolute position of UAVs.Secondly,an ORB feature extraction algorithm combined with SIFT scale-space optimization is adopted to extract the feature points of the image dataset.Finally,an improved ORB feature matching algorithm is proposed,which is named ORB+GMS+PROSAC algorithm,to quickly match the image features with the image reference database and improve the matching accuracy.The result shows that the performance of the feature matching algorithm based on ORB+GMS+PROSAC is significantly improved by segmenting images in ArcGIS to construct a benchmark database and conduct experimental analysis.Among them,the matching accuracy rate increases by 5.05%,and the matching time decreases by 41.61%,which is obviously better than other traditional feature matching algorithms.
作者 陈明强 张勇 冯树娟 周子杨 解靖涛 CHEN Mingqiang;ZHANG Yong;FENG Shujuan;ZHOU Ziyang;XIE Jingtao(School of Flight Technology,Civil Aviation Flight University of China,Guanghan 618307,China)
出处 《电讯技术》 北大核心 2024年第3期382-389,共8页 Telecommunication Engineering
基金 民航飞行技术与飞行安全重点实验室自主研究项目(FZ2021ZZ06)。
关键词 视觉导航 特征提取 特征匹配 ORB visual navigation feature extraction feature matching ORB
  • 相关文献

参考文献7

二级参考文献40

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部