期刊文献+

仿射协变的G-质心

AFFINE COVARIANCE OF G-CENTROID
下载PDF
导出
摘要 图像质心保持仿射协变,但仅可用于消除平移。为方便地提取仿射不变特征,需构造保持仿射协变且异于质心的类质心点。现有算法要么计算量大,要么对二值图像不适用。针对这种情况,提出G-质心,通过改造在极坐标系中图像质心的定义得到,引入极径方向积分的变换函数,使得目前大多的类质心构造算法均是其特例。实验结果表明,通过引入中心投影类的变换函数,所得G-质心可比广义质心、交叉权重质心等算法具有更优的抗噪性能。 Centroid of the image keeps affine covariance,but it can be only used to eliminate translation.In order to extract affine invariant features conveniently,it is necessary to construct centroid-like points that keep affine covariance and are different from the centroid.The existing algorithms are either computationally expensive or not suitable for binary images.In view of this,G-centroid is proposed.It was obtained by modifying the definition of centroid in the polar coordinate system,and the transformation function of integral along radial direction was introduced,thus making most of current centroid-like construction algorithms are special cases of the proposed G-centroid.Experimental results show that obtained G-centroid is more robustness to noise by introducing functions about central projection,compared with the generalized centroid,cross-weighted centroid and other methods.
作者 王贝贝 杨建伟 Wang Beibei;Yang Jianwei(College of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210000,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2024年第3期207-212,275,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61572015,41375115)。
关键词 特征提取 仿射协变 仿射变换参数恢复 质心 抗噪性 Feature extraction Affine covariance Parametric estimation of affine transformations Centroid Robustness to noise
  • 相关文献

参考文献5

二级参考文献58

  • 1蒋金山,余英林.中心投影变换及其在二值图像检索中的应用[J].计算机应用与软件,2005,22(2):21-22. 被引量:2
  • 2陈涛,蒋咏梅,粟毅,郁文贤.基于压缩映射不动点的图像几何不变特征提取[J].信号处理,2007,23(1):19-26. 被引量:3
  • 3Bala E, Cetin A E. Computationally efficient wavelet affine invariant functions for shape recognition [ J ]. IEEE Trans. PAMI, 2004, 26(8): 1095-1099.
  • 4Arbter K, Snyder W E, Burkhardt H, et al. Application of affine-invariant fourier descriptors to recognition of 3-D objects [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(7) : 640-647.
  • 5Lazebnik S, Schmid C, Ponce J. Affine-invariant local descriptors and neighborhood statistics for texture recognition [ C] //Proe. 9th Int'l Conf. Computer Vision, Washington, DC.USA: IEEE Computer Society, 2003, 1 : 649-655.
  • 6Polikarpova N. Fractal features in image recognition [ J]. SPIE Image Processing and Computer Optics, 1994, 2363: 104-108.
  • 7Liu Jin, Zhang Tianxu. Fast algorithm for generation of moment invariants [J]. Pattern Recognition, 2004,37(10) : 1745-1756.
  • 8Liu Jin, Zhang Tianxu. Recognition of the blurred image by complex moment invariants [J]. Pattern Recognition Letters, 2005, 26(8) : 1128-1138.
  • 9Yang Zhengwei, Cohen F S. Image registration and object recognition using affineinvariants and convex hulls [ J ]. IEEE Trans. Image Processing, 1999, 8 (7) : 934-946.
  • 10Khan W A, Javed M Y, Anjum M A. Occluded face images recognition using robust LDA [ C]//Proceedings of 2th Int'l Conf. Emerging Technologies. Washington, DC. USA: IEEE Computer Society, 2006 : 151 - 156.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部