期刊文献+

一种基于知识图谱共享信息的推荐模型

A RECOMMENDER MODEL BASED ON KNOWLEDGE GRAPHS SHARING INFORMATION
下载PDF
导出
摘要 在结合知识图谱的推荐模型中,依赖用户历史行为和知识图谱嵌入得到的向量会丢失部分信息,使向量化表示不准确,且多数模型无法充分建模用户和物品的特征交互。针对上述问题,提出一种基于知识图谱共享信息的推荐模型ISRS。在知识图谱模块中,实体向量的训练需考虑当前三元组(head, relation, tail),即先建模head和relation的关系,再与物品共享信息;通过DeepFM建模用户和物品间的低阶、高阶特征交互。实验表明:该模型与主流推荐模型相比,在CTR预测和Top-K推荐场景下都有更优的表现。 In the recommendation model combined with the knowledge graph,the item vector obtained by user history behavior and knowledge graph embedding may lose some information,which makes the item vector representation inaccurate.In addition,most recommendation model cannot fully model the feature interaction between user and item.To solve the above problems,a recommender model based on knowledge graphs sharing information(ISRS)is proposed.In the knowledge graph module,the training of entity vector had to consider the current triad(head,relation,tail),which was modeling the relationship between head vector and relation vector and then sharing information with the item vector.The feature interactions of user and item were extracted by DeepFM layers,and the low-order and high-order interactions were modeled.The experiments demonstrate that ISRS model performs better in CTR prediction and Top-K recommendation,compared with other state-of-the-art methods.
作者 田鹏 朱瑞 张健 王坤 张俊三 Tian Peng;Zhu Rui;Zhang Jian;Wang Kun;Zhang Junsan(Zaozhuang Power Supply Company State Grid Shandong Electric Power Company,Zaozhuang 277000,Shandong,China;College of Computer Science and Technology,China University of Petroleum(East China),Qingdao 266580,Shandong,China)
出处 《计算机应用与软件》 北大核心 2024年第3期233-239,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61673396) 中央高校基本科研业务费专项资金项目(20CX05019A) 中石油重大科技项目(ZD2019-183-004)。
关键词 深度学习 推荐系统 知识图谱 信息共享 Deep learning Recommender system Knowledge graph Information sharing
  • 相关文献

参考文献5

二级参考文献27

  • 1郭留柱.也谈什么是本质[J].山西大学学报(哲学社会科学版),1993,16(1):56-60. 被引量:2
  • 2仓道来.论本质和现象之间的辩证转化[J].青海社会科学,1995(3):63-66. 被引量:1
  • 3LONGBING C, PHILIP Y. Behavior computing: modeling, a- nalysis, mining and decision [ M ]. London: Springer-Ver- lag, 2012.
  • 4GIACOMErlTI P. Multimodal electroencephalography and near- infrared spectroscopy neumimaging measurement and analysis [ D]. Hanover: Dartmouth College, 2014.
  • 5SAMSON A, VOYER B G. Two minds, three ways: dual sys- tem and dual process models in consumer psychology [ J ]. AMS Review, 2012, 2 (2-4): 48-71.
  • 6NAINI M M, NAINI J F. N-dimensions, parallel realities, and their relations to human perception and development [ J ]. Journal of Integrated Design and Process Science, 2009, 13 (1) : 49-61.
  • 7SANDIS C. Verbal reports and "real" reasons: confabulation and eonflation [ J ]. Ethical Theory and Moral Practice, 2015, 18 (2): 267-280.
  • 8WEINSCHENK S M. Neuro web design: what makes them click? [ M ]. Berkeley: New Riders Publishing, 2009: 9-10.
  • 9MCNEE S M, RIEDL J, KONSTAN J A. Being accurate is not enough: how accuracy metrics have hurt recommender systems [ C]//CHI06 Extended Abstracts on Human Factors in Compu- ting Systems. ACM, 2006: 1097-1101.
  • 10KITCHENHAM B, PFLEEGER S L. Principles of survey re- search part 4 : questionnaire evaluation [J]. ACM Sigsoft Software Engineering Notes, 2002, 27 (3): 20-23.

共引文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部