期刊文献+

基于改进CNN-LSTM融合的僵尸网络识别方法

BOTNET IDENTIFICATION METHOD BASED ON IMPROVED CNN-LSTM FUSION
下载PDF
导出
摘要 P2P及fast-flux等技术的出现使僵尸网络隐蔽性大大增强。传统人工提取特征的识别方法愈发困难并且识别精度低。该文设计一种新的基于CNN及LSTM融合网络结构,使用改进激活函数和网络结构的卷积神经网络检测空间特征,并使用长短时记忆网络检测时序特征,将两种特征并联融合用于识别僵尸网络。实验表明,该方法在精度和召回率等方面可满足僵尸网络识别需求。 The emergence of P2P and fast-flux technology makes botnet more covert.The traditional recognition method of feature extraction is more and more difficult,and the recognition accuracy is low.In order to solve the above problems,this paper designs a new fusion network structure based on CNN and LSTM.In this method,convolutional neural network with improved activation function and network structure was used to detect spatial features,and LSTM network was used to detect temporal features.Experimental results show that the method can meet the needs of Botnet identification in terms of accuracy and recall.
作者 卢法权 陈丹伟 Lu Faquan;Chen Danwei(College of Computer,College of Software,College of Network Space Security,Nanjing University of Posts and Telecommunications,Nanjing 210023,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2024年第3期328-335,共8页 Computer Applications and Software
关键词 僵尸网络 卷积神经网络 长短时记忆网络 特征并联融合 激活函数 Botnet Convolutional Neural Network(CNN) Long and short-term memory(LSTM) Feature parallel fusion Activation function
  • 相关文献

参考文献8

二级参考文献36

  • 1熊刚,孟姣,曹自刚,王勇,郭莉,方滨兴.网络流量分类研究进展与展望[J].集成技术,2012,1(1):32-42. 被引量:24
  • 2陈亮,龚俭,徐选.应用层协议识别算法综述[J].计算机科学,2007,34(7):73-75. 被引量:33
  • 3DONG K K, GUO L, FU Q S. An Adult Image Detection Algorithm Based on Bag-of-Visual-Words and Text In(ormation[C]//lOth Intenaational Conference on Natural Computation, 2014: 556-560.
  • 4VIOLA P, JONES M J. Robust real-time t=ace detection[J]. International journal of computer vision, 2004, 57(2): 137-154.
  • 5FELZENSZWALBP F, GIILSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Trans on PAMI, 2009, 32(9): 1627-1645.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceeding of 26th Annual Conference on Neural Infomlation Processing Systems. Lake Tahoe: Neunl information processing system foundation, 2012:1097 - 1105.
  • 7Howard A G. Some improvements on deep convolutional neural network based image classification[EB/OL], http://arxiv.org/ abs/1312.5402. 2015-03-14.
  • 8诸葛建伟,韩心慧,周勇林,叶志远,邹维.僵尸网络研究[J].软件学报,2008,19(3):702-715. 被引量:157
  • 9郭志刚,彭天强,李弼程.基于直方图和交叉熵的文本图像识别方法[J].数据采集与处理,2009,24(5):638-642. 被引量:2
  • 10李芳馨,刘嘉勇.网络数据流还原重组技术研究[J].通信技术,2011,44(7):113-114. 被引量:14

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部