期刊文献+

基于卷积神经网络的档案分类与识别技术

Archive Classification and Recognition Technology Based on Convolutional Neural Networks
下载PDF
导出
摘要 文中基于卷积神经网络,研究了档案分类与识别技术,旨在提高档案管理的效率和准确性。首先,介绍了卷积神经网络在图像分类任务中的应用,总结了现有研究的主要成果。然后,阐述了档案分类与识别的概念,详细介绍了卷积神经网络的基本原理和特点。接着,提出了基于卷积神经网络的档案分类与识别技术的基本流程,包括数据预处理、特征提取、分类归档等步骤。最后,详细讨论了数据采集、数据预处理、模型设计、模型训练、模型测试、结果分析等关键环节。 Based on convolutional neural networks,this paper studies the archive classification and recognition technology,aiming to improve the fficiency and accuracy of archive management.First,the application of convolutional neural networks in image classification tasks is introduced,and the main results of existing research are summarized.Then,the concept of archive classification and recognition is expounded,and the basic principle and characteristics of convolutional neural networks are introduced in detail.Then,the basic process of archive classification and recognition technology based on convolutional neural networks is proposed,including data preprocessing,feature extraction,classification and archiving and other steps.Finally,the key links such as data collection,data preprocessing,model design,model training,model testing,and result analysis are discussed in detail.
作者 左震宇 ZUO Zhenyu(Shenyang Institute of Science and T echnology,Shenyang 110166,China)
机构地区 沈阳科技学院
出处 《移动信息》 2024年第2期153-156,共4页 MOBILE INFORMATION
关键词 卷积神经网络 档案管理 分类归档 Convolutional neural network Archive management Classification and archiving
  • 相关文献

参考文献3

二级参考文献14

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部