摘要
文本分析是自然语言处理领域中的重要任务,其意义在于将大量文本数据分为不同类别,以便更好地理解和管理信息。文本分析的应用极为广泛,可用于垃圾邮件过滤、情感分析、新闻分类等领域,对信息组织和检索具有重要影响。然而,文本分析面临着文本数据维度高、语义复杂性、标注数据不足等挑战,为解决以上问题,文中深入研究了机器学习技术在文本分析中的应用,以期能提高文本分类的性能和效率。
Text analysis is an important task in the field of natural language processing.Its significance is to divide a large amount of text data into different categories in order to better understand and manage information.Text analysis has a wide range of applications,which can be used in email spam filtering,sentiment analysis,news clasification and other fields,and has an important impact on information organization and retrieval.However,text analysis faces challenges such as high dimension of text data,semantic complexity,and insufficient labeling data.In order to solve the above prob-lems,the application of machine learning technology in text analysis is deeply studied in this paper,in order to improve the performance and efficiency of text classification.
作者
李妍
LI Yan(Patent Examination Cooperation Guangdong Center Of The Patent Office,CNIPA,Guangzhou 510555,China)
出处
《移动信息》
2024年第2期216-219,共4页
MOBILE INFORMATION
关键词
机器学习技术
文本分析
应用
Machine learning technology
Text analysis
Apply