期刊文献+

拟L_(0) filiform左对称代数的导子

Derivation of Quasi L_(0)iliform Left-symmetric Algebra
下载PDF
导出
摘要 本文利用导子的定义,通过分析拟L_(0)filiform左对称代数的结构特征,讨论其导子在拟L_(0)filiform左对称代数的一组特殊基上的作用,得到拟L_(0)filiform左对称代数的导子代数结构。发现拟L_(0)filiform左对称代数的导子在这组特殊基下的矩阵是下三角矩阵,得出导子代数是可解李代数。 In this paper,the definition of derivation is utilized and the structure characteristics of quasi L_(0) filiform left-symmetric algebra are analyzed to obtain the structure of the derivation algebra of quasi L_(0) filiform left-symmetric algebra by discussing the action of its derivation on a special base of quasi L_(0) filiform left-symmetric algebra.It is found that the matrices of the derivation of quasi L_(0) filiform left-symmetric algebra are lower triangle matrices on this special base and the derivation algebra is a solvable lie algebra.
作者 张盼 吴明忠 ZHANG Pan;WU Ming-zhong(School of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China)
出处 《西华师范大学学报(自然科学版)》 2024年第2期155-158,共4页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅资助科研项目(17AZ0378) 西华师范大学博士科研启动基金项目(15E027) 西华师范大学基本科研业务费项目(17C048) 西华师范大学英才科研基金项目(17YC392)。
关键词 左对称代数 拟L_(0)filiform左对称代数 强充分基 导子 可解 left-symmetric algebra quasi L_(0)filiform left-symmetric algebra strongly adequate base derivation solvable
  • 相关文献

参考文献5

二级参考文献44

  • 1MOSTOW G D. Fully Reducible Subgroup of Algebraic Group[ J]. Amer Math, 1951,73:453 -474.
  • 2MENG D J. Some Results on Complete Lie Algebras[ J]. Comm. Algebra, 1994,22:5457 -5507.
  • 3MENG D J,ZHU L S. Solvable Complete Lie Algebras Ⅰ[ J ] .Comm. Algebra, 1996,24:4181 - 4197.
  • 4VERGNE M. Cohomologie des Algebres de Lie Nilpotentes,Application a L'etude de la Variete des Algebres de Lie Niloptentes [ J]. Bull. Soc. Math. France, 1970,98:81 - 116.
  • 5ZHOU H C. The Automorphism Group of Solvable Complete Lie Algebra Whose Nilpotent Radical is a Heisenbery Algebra[ J]. Sic. Nat. Qufu Normal Univ. , 1999,1:23 - 25.
  • 6SANTHAROUNANE L J. Kac - Moody Lie Algebra and the Classification of Nilpotent Lie Algebras of Maximal Rank[ J]. Cannd Math. 1982,34 : 1215 - 1239.
  • 7LEGERL G,LUKS E. On Derivations and Holomorphs of Nilpotent Lie Algebra[ J ]. Nagoya Math, 1971,44:39 -50.
  • 8REN B. A Sufficient and Necessary Condition for a Solvable Lie Algebra to be Completable [ J ]. Northeast Math, 1997,13:309 - 314.
  • 9Filippov V T. n-Lie algebras [J]. Sibirsk Mat zs. 1985.26(6): 126.
  • 10Kasymov S. On a theory of n-Lie algebras[J]. Algebra Logika , 1987. 26(3): 277.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部