摘要
本文利用导子的定义,通过分析拟L_(0)filiform左对称代数的结构特征,讨论其导子在拟L_(0)filiform左对称代数的一组特殊基上的作用,得到拟L_(0)filiform左对称代数的导子代数结构。发现拟L_(0)filiform左对称代数的导子在这组特殊基下的矩阵是下三角矩阵,得出导子代数是可解李代数。
In this paper,the definition of derivation is utilized and the structure characteristics of quasi L_(0) filiform left-symmetric algebra are analyzed to obtain the structure of the derivation algebra of quasi L_(0) filiform left-symmetric algebra by discussing the action of its derivation on a special base of quasi L_(0) filiform left-symmetric algebra.It is found that the matrices of the derivation of quasi L_(0) filiform left-symmetric algebra are lower triangle matrices on this special base and the derivation algebra is a solvable lie algebra.
作者
张盼
吴明忠
ZHANG Pan;WU Ming-zhong(School of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China)
出处
《西华师范大学学报(自然科学版)》
2024年第2期155-158,共4页
Journal of China West Normal University(Natural Sciences)
基金
四川省教育厅资助科研项目(17AZ0378)
西华师范大学博士科研启动基金项目(15E027)
西华师范大学基本科研业务费项目(17C048)
西华师范大学英才科研基金项目(17YC392)。