期刊文献+

Time-Aware LSTM Neural Networks for Dynamic Personalized Recommendation on Business Intelligence

原文传递
导出
摘要 Personalized recommendation plays a critical role in providing decision-making support for product and service analysis in the field of business intelligence.Recently,deep neural network-based sequential recommendation models gained considerable attention.However,existing approaches pay litle attention to users'dynamically evolving interests,which are influenced by product attributes,especially product category.To overcome these challenges,we propose a dynamic personalized recommendation model:DynaPR.Specifically,we first embed product information and attribute information into a unified data space.Then,we exploit long short-term memory(LsTM)networks to characterize sequential behavior over multiple time periods and seize evolving interests by hierarchical LSTM networks.Finally,similarity values between users are measured through pairwise interest features,and personalized recommendation lists are generated.A series of experiments reveal the superiority of the proposed method compared withotheradvanced methods.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期185-196,共12页 清华大学学报(自然科学版(英文版)
  • 相关文献

参考文献6

二级参考文献45

  • 1Zhiyao Hu,Dongsheng Li,Deke Guo.Balance Resource Allocation for Spark Jobs Based on Prediction of the Optimal Resource[J].Tsinghua Science and Technology,2020,25(4):487-497. 被引量:6
  • 2吴涛,张铃,张燕平.机器学习中的核覆盖算法[J].计算机学报,2005,28(8):1295-1301. 被引量:33
  • 3E Resnick and H. R. Varian, Recommender systems, Communications of the ACM, vol. 40, no. 3, pp. 56-58, 1997.
  • 4G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state- of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734- 749, 2005.
  • 5M. Balabanovic and Y. Shoham, Fab: content-based, collaborative recommendation, Communications of the ACM, vol. 40, no. 3, pp. 66-72, 1997.
  • 6M. J. Pazzani and D. Billsus, Content-based recommendation systems, The Adaptive Web. Heidelberg: Springer Berlin, 2007, pp. 325-341.
  • 7D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave an information tapestry. Communications of the ACM, vol. 35, no. 12, pp. 61-70, 1992.
  • 8J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative filtering recommender systems, The Adaptive Web. Heidelberg: Springer Berlin, 2007, pp. 291- 324.
  • 9X. Su and T. M. Khoshgoftaar, A survey of collaborative filtering techniques, Advances in Artificial Intelligence, vo. 2009, pp. 1-19.
  • 10C. Christakou, S. Vrettos, and A. Stafylopatis, A hybrid movie recommender system based on neural networks, International Journal on Artificial Intelligence Tools, vol. 16, no. 5, pp. 771-792, 2007.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部