摘要
拓扑指标是分子结构的数学描述符,它将分子的形状、大小、分支等结构特征数值化,且计算简便、取值客观,不易受经验和实验的影响,是数学与化学研究中非常活跃的领域之一。研究拓扑指标图不变量可用于描述和预测有机化合物的理化或药理性质。文章研究Mycielski图的补图的两类度距离指标:Schultz指标和修正的Schultz指标。同时,还给出了一些特殊图的Mycielski图及其补图的Lanzhou指标的表达式。
Topology index is a mathematical descriptor of molecular structure,which digitizes the structural characteristics of molecules such as shape,size,and branching.It is easy to calculate,has objective values,and is not easily limited by experience and experiments.The study of topological index graph invariants is currently one of the most active research areas in chemical graph theory,which can be used to describe and predict the physicochemical or pharmacological properties of organic compounds.This article studies two types of degree distance metrics for the complement of Mycielski graphs:Schultz index and modified Schultz index.At the same time,expressions for the Lanzhou index of Mycielski graphs and their complement graphs of some special graphs are also provided.
作者
冯旭
马丽
冯娜
王雅慧
热萨莱提·穆海买提
FENG Xu;MA Li;FENG Na;WANG Ya-hui;RESALAITI·Muhaimaiti(College of Mathematics and Physics,Xinjiang Agricultural University,Urumqi,Xinjiang,830052,China)
出处
《新疆师范大学学报(自然科学版)》
2024年第2期10-16,共7页
Journal of Xinjiang Normal University(Natural Sciences Edition)
基金
新疆农业大学大学生创新创业训练计划项目(dxscx2023491)。