摘要
血液透析是终末期肾病主要的肾脏替代治疗方式,自体动静脉内瘘(arteriovenous fistula,AVF)是各大指南推荐的首选血管通路。但反复的AVF失功不仅影响患者生存质量,亦增加巨大的经济、社会负担。因此对AVF功能及时评估并适时给予干预措施至关重要。而相较于物理检查,人工智能因其可以实现检查结果的精确量化、诊疗同质化及远程诊疗而成为研究热点。本文主要对AVF声学特征、声学特征提取方法以及机器学习方法的选择、AVF人工智能监测系统的开发3个方面的研究进展做综述,以期梳理研究脉络,探索临床研究方向。
Hemodialysis is the mainstay of renal replacement therapy for end-stage renal disease,and ar-teriovenous fistula(AVF)is the preferable method for vascular access recommended by major guidelines.However,repeated AVF failures affect the quality of life of the patients,and increase economic and social bur-dens.Therefore,continuous assessment of AVF function and early intervention to abnormal AVF is essential.Currently,artificial intelligence has become a hot issue due to the advantages of accurate and quantified re-sults,homogenized and remote diagnosis and treatment,as compared to the physical examination of AVF.In this article,research progresses in AVF acoustic feature and its extraction method,selection of machine learn-ing method,and the development of AVF monitoring system by artificial intelligence are reviewed in order to explore the research pathways and the direction of clinical research.
作者
王凡立
徐元恺
张丽红
杨艳丽
WANG Fan-li;XU Yuan-kai;ZHANG Li-hong;YANG Yan-li(Department of Nephrology,The First Hospital of Hebei Medical University,Shijiazhuang 050030,China;Department of Nephrology,Zhejiang Hospital,Hangzhou 310030,China)
出处
《中国血液净化》
CSCD
2024年第2期125-129,共5页
Chinese Journal of Blood Purification
基金
河北省卫生健康创新专项(22377794D)。
关键词
AVF
人工智能
机器学习
音频
Arteriovenous fistula
Artificial intelligence
Machine learning
Audio