摘要
交通标志检测对智能交通系统和智能驾驶的安全稳定运行具有重要作用。数据分布不平衡、场景单一会对模型性能造成较大影响,而建立一个完备的真实交通场景数据集需要昂贵的时间成本和人工成本。基于此,该文提出一个面向元宇宙的交通标志检测新范式以缓解现有方法对真实数据的依赖。首先,通过建立元宇宙和物理世界之间的场景映射和模型映射,实现检测算法在虚实世界之间的高效运行。元宇宙作为一个虚拟化的数字世界,能够基于物理世界完成自定义场景构建,为模型提供海量多样的虚拟场景数据。同时,该文结合知识蒸馏和均值教师模型建立模型映射,应对元宇宙和物理世界之间存在的数据差异问题。其次,为进一步提高元宇宙下的训练模型对真实驾驶环境的适应性,该文提出启发式注意力机制,通过对特征的定位和学习来提高检测模型的泛化能力。所提架构在CURE-TSD,KITTI,VKITTI数据集上进行实验验证。实验结果表明,所提面向元宇宙的交通标志检测器在物理世界具有优异的检测效果而不依赖大量真实场景,检测准确率达到89.7%,高于近年来其他检测方法。
Traffic sign detection plays an important role in the safe and stable operation of intelligent transportation systems and intelligent driving.Unbalanced data distribution and monotonous scene will lead to poor model performance,but building a complete real traffic scene dataset requires expensive time and labor costs.Based on this,a new metaverse-oriented traffic sign detection paradigm is proposed to alleviate the dependence of existing methods on real data.Firstly,by establishing the scene mapping and model mapping between the metaverse and the physical world,the efficient operation of the detection algorithm between the virtual and real worlds is realized.As a virtualized digital world,Metaverse can complete custom scene construction based on the physical world,and provide massive and diverse virtual scene data for the model.At the same time,knowledge distillation and the mean teacher model is combined in this paper to establish a model mapping to deal with the problem of data differences between the metaverse and the physical world.Secondly,in order to further improve the adaptability of the training model under the Metaverse to the real driving environment,a heuristic attention mechanism is designed to improve the generalization ability of the detection model by locating and learning features.The proposed architecture is experimentally verified on the CURE-TSD,KITTI,Virtual KITTI(VKITTI)datasets.Experimental results show that the proposed metaverse-oriented traffic sign detector has excellent detection results in the physical world without relying on a large number of real scenes,and the detection accuracy reaches 89.7%,which is higher than other detection methods of recent years.
作者
王俊帆
陈毅
高明煜
何志伟
董哲康
缪其恒
WANG Junfan;CHEN Yi;GAO Mingyu;HE Zhiwei;DONG Zhekang;MIAO Qiheng(School of Electronics Information,Hangzhou Dianzi University,Hangzhou 310018,China;Zhejiang Provincial Key Lab of Equipment Electronics,Hangzhou 310018,China;College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Zhejiang Huaruijie Technology Co.,Ltd.,Hangzhou 310051,China)
出处
《电子与信息学报》
EI
CAS
CSCD
北大核心
2024年第3期777-789,共13页
Journal of Electronics & Information Technology
基金
浙江省研发攻关计划项目(2023C01132)
杭州市重大科技创新项目(2022AIZD0009)。
关键词
元宇宙
智能交通系统
交通标志检测
场景映射
模型映射
Metaverse
Intelligent transportation systems
Traffic sign detection
Scene mapping
Model mapping