期刊文献+

Isotopic insights on quantitative assessments of interaction of eco-hydrological processes in multi-scale karst watersheds

原文传递
导出
摘要 The dynamics of hydrological processes and the storage mechanisms of karst water resources are the most important issues in karst hydrology.The impact of environmental changes on water quantity,and the evaluation and quantification of eco-hydrological processes remain poorly addressed.In this study,high-frequency continuous monitoring in multi-scale karst watersheds in Southwest China combined the approaches of water isotopes and the hybrid single-particle lagrangian integrated trajectory(HYSPLIT)model to identify the recharge mechanisms between atmospheric vapor,rainfall,surface water,and groundwater,and to reveal the interaction of eco-hydrological processes.The dominant moisture sources in Puding(PD)County were the Indian Ocean(43-69%)and local moisture(24-33%).Theδ^(18)O and deuterium excess(d-excess)values showed a positive correlation indicating that secondary or sub-cloud evaporation was prominent in the wet seasons.Karst water line-conditioned excess(lc-excess)indicated that karst water interacted with recent precipitation,groundwater,and evaporation across seasons.Owing to its specific hydrogeological structure,surface water and rainwater have a higher contribution rate to groundwater replenishment.The Chenqi stream replenished the Houzhai River mainly in the form of groundwater,with percentages ranging from 38.1 to 93.5%in the wet season,and 47.8-80.1%in the dry season.In the Houzhai outlet,surface water and groundwater interconverted frequently with a percentage of 45.6-49.1%.We believe this is the first systematic study to quantify the supply relationship between water vapor transport,rainfall,surface water and groundwater in the Chinese karst zone,making a significant move forward in the field of karst hydrological processes and improving the efficiency of water resource evaluation and management.
出处 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第1期156-170,共15页 国际水土保持研究(英文)
基金 The authors of this study would like to thank all anonymous reviewers for their helpful comments.This study was financially supported by the National Natural Science Foundation of China(No.42107083) Central Public-interest Scientific Institution Basal Research Fund(No.BSRF202209) National Natural Science Foundation of China(No.72004010).
  • 相关文献

参考文献1

二级参考文献19

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部