摘要
抑郁症为常见神经心理疾病,目前尚无客观诊断标准。MRI可提供脑结构、白质纤维束完整性及静息态和任务态下脑功能等多方面信息;MRI影像组学和机器学习(ML)有助于建立个体化诊断抑郁症模型。本文对基于MRI影像组学及ML诊断抑郁症研究进展进行综述。
Depressive disorder is a common neuropsychological disease,but the objective diagnostic criteria mains lack up till now.MRI can provide plenty information of brain structures,white matter fiber bundles as well as resting-state or task-related brain functions,etc.Radiomics and machine learning(ML)based on MRI can help to establish personalized diagnosis models of depression disorder.The research progresses of radiomics and ML based on MRI for diagnosing depressive disorder were reviewed in this article.
作者
祁纳
赵军
QI Na;ZHAO Jun(Department of Nuclear Medicine,Shanghai East Hospital,Tongji University,Shanghai 200123,China)
出处
《中国医学影像技术》
CSCD
北大核心
2024年第3期455-458,共4页
Chinese Journal of Medical Imaging Technology
基金
上海市浦东新区卫生系统重点学科(PWZxk2022-12)。
关键词
抑郁症
磁共振成像
机器学习
影像组学
depressive disorder
magnetic resonance imaging
machine learning
radiomics