期刊文献+

Double integral-enhanced Zeroing neural network with linear noise rejection for time-varying matrix inverse

下载PDF
导出
摘要 In engineering fields,time-varying matrix inversion(TVMI)issue is often encountered.Zeroing neural network(ZNN)has been extensively employed to resolve the TVMI problem.Nevertheless,the original ZNN(OZNN)and the integral-enhanced ZNN(IEZNN)usually fail to deal with the TVMI problem under unbounded noises,such as linear noises.Therefore,a neural network model that can handle the TVMI under linear noise interference is urgently needed.This paper develops a double integral-enhanced ZNN(DIEZNN)model based on a novel integral-type design formula with inherent linear-noise tolerance.Moreover,its convergence and robustness are verified by deriva-tion strictly.For comparison and verification,the OZNN and the IEZNN models are adopted to resolve the TVMI under multiple identical noise environments.The experi-ments proved that the DIEZNN model has excellent advantages in solving TVMI problems under linear noises.In general,the DIEZNN model is an innovative work and is proposed for the first time.Satisfyingly,the errors of DIEZNN are always less than 1�10−3 under linear noises,whereas the error norms of OZNN and IEZNN models are not convergent to zero.In addition,these models are applied to the control of the controllable permanent magnet synchronous motor chaotic system to indicate the superiority of the DIEZNN.
出处 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期197-210,共14页 智能技术学报(英文)
基金 National Natural Science Foundation of China,Grant/Award Numbers:61962023,62066015。
  • 相关文献

参考文献1

二级参考文献4

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部