期刊文献+

基于深度学习的无线通信频谱感知优化方法

Optimization Method for Wireless Communication Spectrum Perception Based on Deep Learning
下载PDF
导出
摘要 随着无线通信技术的快速发展,频谱资源的有效利用成为提升网络性能的关键问题。提出一种基于长短时记忆(Long Short Term Memory,LSTM)网络的无线通信频谱感知优化方法,通过建模分析时序频谱数据,实现动态无线环境的高效感知。具体介绍了LSTM网络的结构,深入研究基于LSTM的频谱感知方法,将LSTM的输出与通信系统的参数关联,优化网络性能。分析表明,该方法对提高频谱感知的精度有重要作用,使通信系统能够实时适应不断变化的频谱条件,进而有效提升网络性能。 With the rapid development of wireless communication technology,the effective utilization of spectrum resources has become a key issue to enhance network performance.A spectrum sensing optimization method based on Long Short Term Memory(LSTM)network is proposed to achieve efficient sensing of dynamic wireless environment by modeling and analyzing time-series spectrum data.The structure of the LSTM network is specifically introduced,and the LSTM-based spectrum sensing method is studied in depth to optimize the network performance by correlating the output of the LSTM with the parameters of the communication system.The analysis shows that the method plays an important role in improving the accuracy of spectrum sensing,so that the communication system can adapt to the changing spectrum conditions in real time,and then effectively improve the network performance.
作者 贾怡婧 李真真 JIA Yijing;LI Zhenzhen(Luohe Vocational and Technical College,Luohe 462000,China)
出处 《通信电源技术》 2024年第2期4-6,共3页 Telecom Power Technology
关键词 深度学习 通信网络 频谱感知 长短期记忆 deep learning communication network spectrum sensing Long and Short Term Memory(LSTM)
  • 相关文献

参考文献11

二级参考文献183

  • 1徐鹏飞,李炜,郑华,吴建国.神经网络在时间序列预测中的应用研究[J].电子技术(上海),2010(8):5-7. 被引量:11
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3李圣安,王保云.一种新的智能无线技术——认知无线电技术[J].电信快报,2005(11):18-20. 被引量:12
  • 4[1]Mitola J.Cognitive radio:Making software radios more personal.IEEE Pers.Commun.,Aug.1999,6(4):13-18.
  • 5[2]Haykin S.Cognitive Radio:Brain-Empowered Wire-less Communications.IEEE Journal on Selected Areas in Communications,February 2005,23(2):201-220.
  • 6[4]Cabric D.Implementation Issues in Spectrum Sensing for Cognitive Radios.Signals Systems and Computers,2004.Conference Record of the Thirty-Eighth Asilomar Conference,2004,1:772-776.
  • 7[5]Kolodzy P J.Interference temperature:a metric for dynamic spectrum utilization.International Journal of Network Management,2006,16:103-113.
  • 8[6]Gardner W A.Signal Interception:A Unifying Theoretical Framework for Feature Detection.IEEE Trans.on Communications,August 1988,36(8):897-906.
  • 9[7]Ganesan G,Li Y G.Agility Improvement through Cooperative Diversity in Cognitive Radio.Proc.IEEE GLOBECOM'05,IEEE,Dec.2005:2505-2509.
  • 10河北省通信建设有限公司网络公司无线网规网优.TEMS路测设备使用简易指导书,2007.

共引文献356

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部