期刊文献+

大规模低轨星座多普勒定位算法

Doppler Positioning Performance of LEO Mega Constellation
下载PDF
导出
摘要 基于典型的Starlink星座构型,对大规模低轨星座多普勒定位算法展开研究。实验结果表明,理想条件下低轨星座多普勒单点定位精度可以在3~6 m。为保证米级的定位精度,低轨卫星的位置精度和速度精度应为米级每秒或厘米级每秒。C频段信号受到的电离层误差若不做改正,将导致定位精度变差2 m左右。对流层误差将使得定位结果变差几十米。此外,使用轨道高度为550 km的低轨卫星的多普勒频移定位时,接收机的初值误差应小于300 km,否则部分历元将不能收敛到正确的接收机位置。 This paper proposed a Doppler-only point-solution algorithm and analyzed the Doppler positioning performance based on the Starlink constellation.The Doppler positioning accuracy was about 3~6 m.To achieve the meter-level positioning accuracy,the satel-lite position and velocity errors should be within several meters and several centimeters per second,respectively.The ionospheric delay rates of C-band signal would cause about 2 m error in Doppler positioning.The positioning error would increase by dozens of meters if there were no corrections for the tropospheric errors.To ensure convergence in the LEO-based Doppler positioning,the initial receiver position error should be less than 300 km when the satellites orbit at an altitude of 550 km.
作者 张雨露 李桢 施闯 景贵飞 ZHANG Yulu;LI Zhen;SHI Chuang;JING Guifei(Research Institute for Frontier Science,Beihang University,Beijing 100191,China;Laboratory of Navigation and Communication Fusion Technology,Ministry of Industry and Information Technology,Beijing 100191,China)
出处 《天地一体化信息网络》 2024年第1期84-94,共11页 Space-Integrated-Ground Information Networks
基金 国家自然科学基金资助项目(No.41931075,No.42204033) 中央高校基本科研业务费项目(YWF-23-JC-12)。
关键词 定位导航授时 低轨卫星互联网星座 多普勒定位 电离层误差 对流层误差 positioning navigation and timing broadband LEO constellations Doppler positioning ionospheric delay rates tropo-spheric delay rates
  • 相关文献

参考文献6

二级参考文献64

  • 1杨宇飞,杨元喜,徐君毅,许扬胤,赵昂.低轨卫星对导航卫星星座轨道测定的增强作用[J].武汉大学学报(信息科学版),2020,45(1):46-52. 被引量:14
  • 2耿江辉,施闯,赵齐乐,刘经南.联合地面和星载数据精密确定GPS卫星轨道[J].武汉大学学报(信息科学版),2007,32(10):906-909. 被引量:13
  • 3D. Borio, N. Sokolova, G. Lachapell, et al.. Doppler measurement accuracy in standard and high sensi- tivity global navigation satellite system receivers. IET Radar, Sonar & Navigation, 5(2011)6, 657-665.
  • 4D. Borio, N. Sokolova, and G. Lachapelle. Doppler measurements and velocity estimation: A theoretical framework with software receiver implementation. The 22nd International Technical Meeting of the Satellite Division of the nstitute of Navigation Pro-ceedings, Savannah, GA, USA, September 22-25, 2009, 304-316.
  • 5J. T. Curran, G. Lachapelle, and C. C. Murphy. Digital GNSS PLL design conditioned on thermal and oscillator phase noise. IEEE Transactions on Aero- space and Electronic Systems, 48(2012)1, 180-196.
  • 6J. T. Curran, G. Lachapelle, and C. C. Murphy. Im- proving the Design of Frequency Lock Loops for GNSS Receivers. IEEE Transactions on Aerospace and Elec- tronic Systems, 48(2012)1,850-868.
  • 7Yunfei Li, Minjian Zhao, Jie Zhong, et al.. An algo- rithm based on dynamic compensation for GNSS carrier tracking of weak signal. The 12th IEEE In- ternational Conference on Communication Technol- ogy Proceedings, Nanjing, China, November 11-14, 2010, 1184-1187.
  • 8P. Fenton and B. Townsend. Novatel communications Ltd, -What's new? KIS Conference Proceedings, Banff, AB, Canada, 1994, 25-29.
  • 9M. E. Cannon, G. Lachapelle, M. C. Szarmes, et al..DGPS kinematic carrier analysis for precise velocity tion. Journal of the Institute 231-245. phase signal simulation and position determina- of Navigation, 44(1998)2,.
  • 10A. M. Bruton, C. L. Glennie, and K. P. Schwarz. Differentiation for high-precision GPS velocity and acceleration determination. GPS Solutions, 2(1999), 7 21.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部