摘要
近几年,锂离子电池的市场需求剧增,导致原材料价格暴涨。为此,分别将过期葡萄糖酸亚铁和废锂箔与H_(3)PO_(4)反应生成Fe_(3)(PO_(4))2/葡萄糖酸钠磷酸酯和Li_(3)PO_(4)粉末,然后采用磷酸铁工艺制备LiFePO_(4)/C纳米颗粒,并研究其储锂性能。研究结果表明,LiFePO_(4)/C正极在1.0C循环300圈后的可逆容量和容量保持率分别高达129.3mAh/g和97.0%,与商业LiFePO_(4)正极材料性能相当,这可能归功于纳米颗粒及碳层之间的协同效应。该研究降低了LiFePO_(4)的制备成本和环境排放。
In recent years,the market demand for lithium-ion batteries has surged,leading to a dramatic increase in the price of raw materials.Herein,Fe_(3)(PO_(4))2/sodium gluconate phosphate ester and Li 3PO_(4) powders were prepared by the reactions of expired ferrous gluconate and spent lithium foil with H_(3)PO_(4),respectively,followed by using iron phosphate process to obtain LiFePO_(4)/C nano-particles,and their Li-storage performances were investigated.The research results showed that the reversible capacity and capacity retention of LiFePO_(4)/C cathode after 300 cycles at 1.0C were as high as 129.3mAh/g and 97.0%,respectively,which were comparable to those of commercial LiFePO_(4) cathode materials,mainly benefiting from the synergistic effect of nanoparticles and carbon layer.Undoubtedly,this research reduced the preparation cost of LiFePO_(4) and the environmental emission.
作者
兰建
侯宏英
于晓华
荣菊
陈方淑
Lan Jian;Hou Hongying;Yu Xiaohua;Rong Ju;Chen Fangshu(Faculty of Material Science and Engineering,Kunming University of Science and Technology,Kunming 650093;Law School,Kunming University of Science and Technology,Kunming 650093)
出处
《化工新型材料》
CAS
CSCD
北大核心
2024年第3期220-225,共6页
New Chemical Materials
基金
国家自然科学基金(52263010)
云南省第十九批中青年学术技术带头人项目(1097-10978240)。