摘要
本文研究一类具有疫苗接种和时滞的霍乱模型的行波解的稳定性,因模型系统不具有单调性,故采用加权能量法证明模型行波解的指数稳定性,且初始扰动只需要在x=+∞时一致有界.
This paper is concerned with the stability of traveling wave solutions for a cholera model with vaccination and time delay.Since the model system is not monotonous,we prove that the traveling wave is exponentially stable by means of the weighted energy method,when the initial perturbation around the traveling wave only need to be uniformly bounded at x=+∞.
作者
廖书
黄晨琛
LIAO Shu;HUANG Chenchen(School of Mathematics and Statistics,Chongqing Technology and Business University,chongqing 400067,China)
出处
《应用数学》
北大核心
2024年第2期423-438,共16页
Mathematica Applicata
基金
重庆市基础研究与前沿探索项目(cstc2020jcyj-msxmX0394)。
关键词
霍乱模型
稳定性
非拟单调行波
加权能量法
Cholera model
Asymptotic stability
Non-monotone traveling waves
Weighted energy method