摘要
随着计算机网络技术的快速发展,设计和优化复杂网络结构成为提升网络性能的关键。基于机器学习的计算机网络设计与优化研究提供了一种新的解决方案。文章首先阐述机器学习在计算机网络设计中的应用基础,包括传统的优化技术及其局限性。其次,分析机器学习,特别是深度学习和强化学习如何克服这些局限并提供先进的网络设计策略。再次,讨论机器学习在网络资源分配、故障检测、流量预测等方面的应用,通过案例研究展示机器学习方法在实际网络优化中的效果。最后,概述机器学习在计算机网络优化中面临的挑战和未来的研究方向,指出智能优化网络的重要性和发展趋势。
With the rapid development of computer network technology,the design and optimization of complex network structure has become the key to improve network performance.The research of computer network design and optimization based on machine learning provides a new solution.This paper first reviews the application basis of machine learning in computer network design,including traditional optimization techniques and their limitations.It then analyzes how machine learning,particularly deep learning and reinforcement learning,can overcome these limitations and provide advanced network design strategies.We also discuss the application of machine learning in network resource allocation,fault detection,traffic prediction,and network security,and demonstrate the effectiveness of machine learning methods in real-world network optimization through case studies.Finally,this paper summarizes the challenges and future research directions of machine learning in computer network optimization,and points out the importance and development trend of intelligent optimization networks.
作者
修晓琴
XIU Xiaoqin(Guangdong Xin'an Polytechnic,Shenzhen Guangdong 518000,China)
出处
《信息与电脑》
2023年第24期4-6,共3页
Information & Computer
关键词
机器学习
计算机网络设计
网络优化
machine learning
computer network design
network optimization