期刊文献+

一种应用于智能分诊的改进朴素贝叶斯方法 被引量:1

An improved naive bayes method applied to intelligent diagnosis
下载PDF
导出
摘要 针对朴素贝叶斯分类方法(naive bayesian model,NBM)在应用于门诊智能分诊时,无法有效区分不同类型的症状涉及的疾病学科范围不同问题,提出了一种朴素贝叶斯分类方法的改进算法,引入IDF因子,为不同的症状类型提供相应的权重。首先,基于权威医疗文献,收集整理诊断学相关的语料作为训练数据集,然后,基于朴素贝叶斯分类方法计算先验概率、类条件概率,训练生成不同症状的IDF因子,最后,在进行分类判断时对不同的症状组合引入IDF因子,平滑不同类型症状的重要程度。在智能分诊准确性对比实验中,改进后的算法召回率提升约11%,明显高于朴素贝叶斯分类方法。 Focusing on the issue that the naive Bayes model(NBM)in outpatient intelligent diagnosis,it is not effective to distinguish between different types of symptoms involved in a different range of subjects.An improved algorithm for the naive Bayes method is proposed,Introducing IDF factor,Provide different weights for different symptom types.First of all,based on authoritative medical literature,Collected and sorted the related corpus of diagnostics as a training data set,Then,based on the naive Bayes method,the priori probability and the class conditional probability are calculated,Trained the IDF factors for different symptoms,Finally,IDF factor is introduced to different combination of symptoms in classification judgment,to smoothed the different types of symptoms.In the accuracy comparison experiment of intelligent diagnosis,the recall rate of the improved algorithm is up about 11%,obviously higher than the naive Bayes method.
作者 鲍琪琪 孙超仁 BAO Qiqi;SUN Chaoren(Suqian First Hospital,Suqian 223800,China;Shanghai Institute of Computing Technology Center for Big Data Research in Health,Shanghai 200092,China)
出处 《现代医院》 2024年第3期424-427,共4页 Modern Hospitals
关键词 智能分诊 朴素贝叶斯 IDF 多类别分类 有监督学习 Intelligent diagnosis Naive bayes IDF Multi-class classification Supervised learning
  • 相关文献

参考文献3

二级参考文献35

  • 1王宝玉,张启瑜,潘景业,金嵘,朱茸茸,杨虹霞,陈华.城乡对口支援医院双向转诊的路径探讨及实证研究[J].中国全科医学,2009,12(11):1028-1029. 被引量:14
  • 2搜狐研发中心.搜狗文本分类语料库[EB/OL].2008.http://www.sogou.oom/labs/dl/c.html.
  • 3高明霞,刘椿年.基于约束的自然语言问题到OWL的语义映射方法研究[J].电子学报,2007,35(8):1598-1602. 被引量:8
  • 4Smith.Managerial problem identification [ J]. Omega, 1989,17 (1) :27 - 36.
  • 5Malyshev, Piyavsky, Piyavsky. A decision making method under conditions of diversity of n-e.am of reducing uncertainty [ J ]. Journal of Computer and Systems Sciences International,2010, 49(1) :44 - 58.
  • 6Li Huaxiong,Zhou Xianzhong. Risk decision making based on decision-theoretic rough set: A three-way view decision model [ J ]. International JouInal of Computalional Intelligence Sys- tems,2011,4(1) :1 - 11.
  • 7Conrtactor F J, Ra W. How knowledge attributes influence al- fiance governance choices: A theory development note[ J] .Jour- nal of International Management,2002,8:11 - 27.
  • 8T Liang. A logical reasoning and case-bases learning in model management system[ J]. Decision Support System, 1993, 10: 137- 160.
  • 9R. Krishman. PDM: A Knowledge-based tool for model con- strucfion[ J]. Decision Support Systems, 1991,7: 301 - 314.
  • 10Gangopadhyay A. Conc.eptual modeling from natural language functional specifications [ J]. Artificial Intelligence in Engineer- ing,2001,15(2) :207 - 218.

共引文献9

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部